

BLDEA’s s.B. Arts AnD K.C.P. sCiEnCE

CoLLEgE, VijAyAPur
(Affiliated to Rani Channamma University, Belagavi)

Practical’s on DSC 1
ALgEBrA-i AnD CALCuLus-i

(As PEr nEP-2020)

MAnuAL
B. Sc. I Semester

Name:………………………………………………………………………………………...

Class:……………………………………………………………………………………………

UUCMS No:…………………………………………………………………………………

DEPARTMENT OF MATHEMATICS

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 1

Theory Based Practical’s On Algebra-I and Calculus-I

Lab Practical’s:

Part A: (SciLab)

Introduction to the software and commands related to
the topic.
1. Computation of addition and subtraction of

matrices.
2. Computation of Multiplication of matrices.
3. Computation of Trace and Transpose of Matrix.
4. Computation of Rank of matrix and Row reduced

Echelon form.
5. Computation of Inverse of a Matrix using Cayley-

Hamilton theorem.
6. Solving the system of homogeneous and non-

homogeneous linear algebraic equations.

Part B: (Maxima)

7. Finding the nth Derivative of 𝑒௔௫, trigonometric and
hyperbolic functions.

8. Finding the nth Derivative of algebraic and
logarithmic functions.

9. Finding the nth Derivative of 𝑒௔௫ା௕sin(𝑏𝑥 + 𝑐),

𝑒௔௫ା௕cos(𝑏𝑥 + 𝑐).
10. Finding the Taylor’s and Maclaurin’s expansions of

the given functions.
11. Finding the angle between the radius vector and

tangent.
12. Finding the curvatures of the given curves.
13. Tracing of standard curves (Cartesian, polar and

parametric).

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 2

Program 1

Computation of addition and subtraction of matrices

clc
A=input("Enter the first matrix A= ")
[m,n]=size(A)
disp(A)
B=input("Enter the second matrix B=")
[k,l]=size(B)
disp(B)
ifsize(A)==size(B)then
C=A+B
D=A-B
disp("Addition of two matrices C=",C)
disp("Sub of two matrices D=",D)
else
disp("Addition and Subtraction of matrices
not defined")
end

Question1: Find the addition and subtraction of matrices of

൥
5 6 7
1 2 3
7 3 5

൩ and ൥
5 2 1
6 7 8
5 2 1

൩.

Output 1:

Enter the first matrix A= [5 6 7; 1 2 3; 7 3 5]
 5. 6. 7.
 1. 2. 3.
 7. 3. 5.
Enter the second matrix B= [5 2 1; 6 7 8; 5 2 1]
 5. 2. 1.
 6. 7. 8.

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 3

 5. 2. 1.
 "Addition of two matrices C="
 10. 8. 8.
 7. 9. 11.
 12. 5. 6.
"Sub of two matrices D="
 0. 4. 6.
 -5. -5. -5.
 2. 1. 4.

Question 2: Find the addition and subtraction of matrices of

൥
1 5 9
7 5 3
6 8 4

൩ and ቂ1 5 3
7 6 9

ቃ.

Output 2:

Enter the first matrix A= [1 5 9; 7 5 3; 6 8 4]

 1. 5. 9.

 7. 5. 3.

 6. 8. 4.

Enter the second matrix B= [1 5 3; 7 6 9]

 1. 5. 3.

 7. 6. 9.

 "Addition and Subtraction of matrices not defined"

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 4

Program 2

Computation of Multiplication of matrices

clc
A=input("Enter the first matrix A=")
[m,n]=size(A)
disp(A)
B=input("Enter the second matrix B=")
[k,l]=size(B)
disp(B)
ifn==kthen
C=A*B
disp("Multiplication of two matrices C=",C)
else
disp("Matrices of invalid order")
end

Question1: Find the multiplication of matrices of ൥
1 2 5
8 6 7
9 8 10

൩ and

൥
6 8 4
5 9 8
5 11 12

൩.

Output 1:

Enter the first matrix A=[1 2 5; 8 6 7; 9 8 10]

1. 2. 5.

 8. 6. 7.

 9. 8. 10.

Enter the second matrix B=[6 8 4; 5 9 8; 5 11 12]

6. 8. 4.

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 5

 5. 9. 8.

 5. 11. 12.

 "Multiplication of two matrices C="

41. 81. 80.

 113. 195. 164.

 144. 254. 220.

Question 2: Find the multiplication of matrices of ቂ
1 5 6
6 8 2

ቃ and

ቂ
5 9 6
5 8 7

ቃ.

Output 2:

Enter the first matrix A=[1 5 6; 6 8 2]

 1. 5. 6.

 6. 8. 2.

Enter the second matrix B=[5 9 6; 5 8 7]

 5. 9. 6.

 5. 8. 7.

 "Matrices of invalid order"

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 6

Program 3

Computation of Trace and Transpose of Matrix

clc
A=input("Enter the matrix A=")
disp(A)
[m,n]=size(A)
ifm==nthen
trace=0
fori=1:m
trace=trace+A(i,i)
end
disp("Trace of A=",trace)
else
disp("Invalid order")
end

Question1: Find the trace of matrix ൥
5 6 9
8 6 7

12 13 16
൩.

Output 1:
Enter the matrix A=[5 6 9; 8 6 7; 12 13 16]
5. 6. 9.
 8. 6. 7.
 12. 13. 16.

 "Trace of A="

27.

Question 2: Find the trace of matrix ቂ 1 5 6
12 18 17

ቃ.

Output 2:
Enter the matrix A=[1 5 6; 12 18 17]
1. 5. 6.
 12. 18. 17.

 "Invalid order"

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 7

clc

A=input("Enter Matrix A=")
disp(A)
[m,n]=size(A)
fori=1:n
forj=1:m
B(i,j)=A(j,i)
end
end
disp("Transpose of A =",B)

Question1: Find the trace of matrix ൥
7 8 6
5 9 3
7 5 4

൩.

Output 1

Enter Matrix A=[7 8 6; 5 9 3; 7 5 4]

7. 8. 6.
 5. 9. 3.
 7. 5. 4.

 "Transpose of A ="

 7. 5. 7.
 8. 9. 5.
 6. 3. 4.

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 8

Program 4

Computation of Rank of matrix and Row reduced
Echelon form

Rank of Matrix:
clc
A=input("Enter the matrix A=")
[m,n]=size(A)
disp(A)
B=rank(A)
disp("Rank of Ais",B)

Question1: Find the rank ofmatix൥
1 5 6
7 5 3
7 6 4

൩.

Output 1
Enter the matrix A=[1 5 6; 7 5 3; 7 6 4]

1. 5. 6.
 7. 5. 3.
 7. 6. 4.

 "Rank of A is"

3.

Question 2: Find the rank of matrix ቂ1 5 6
7 5 3

ቃ.

Output 2
Enter the matrix A=[1 5 6; 7 5 3]

 1. 5. 6.
 7. 5. 3.

 "Rank of A is"

 2.

Row Reduced Echelon Form:

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 9

clc
A=input("Enter matrix A=")
[m,n]=size(A)
disp(A)
B=rref(A)
disp("Row Reduced Echelon From of A is",B)

Output 1
Enter matrix A=[1 2 3; 7 8 6; 4 8 6]

 1. 2. 3.
 7. 8. 6.
 4. 8. 6.

 "Row Reduced Echelon From of A is"

 1. 0. 0.
 0. 1. 0.
 0. 0. 1.

Output 2

Enter matrix A=[2 3 5 4; 0 2 3 4; 4 8 13 12]

 2. 3. 5. 4.
 0. 2. 3. 4.
 4. 8. 13. 12.

 "Row Reduced Echelon From of A is"

1. 0. 0.25 -1.
 0. 1. 1.5 2.
 0. 0. 0. 0.

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 10

Program 5

Computation of Inverse of a Matrix using Cayley-
Hamilton theorem.

clc
A=input("Enter matrix A =")
[m,n]=size(A)
ifm==nthen
p=poly(A,'x')
disp("Characteristic equation of A=",p)
eg=spec(A)
disp("Eigen values of A=",eg)
adj=det(A)*inv(A)
disp("Adjoint of A=",adj)
B=(1/det(A))*(A^(n-1)*trace(A)*A+trace(adj)*eye(n,n))
disp("Inverse of A=",B)
else
disp("Invalid order")
end

Question 1: Obtain the inverse of matrix ൥
1 1 1
1 2 3
1 3 4

൩ using Cayley

Hamilton theorem.
Output 1:

Enter matrix A =[1 1 1; 1 2 3; 1 3 4]
"Characteristic equation of A="
 1 +3x -7x² +x³
"Eigen values of A="
 -0.2184795
 0.7024336
 6.5160459
"Adjoint of A="

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 11

 -1. -1. 1.
 -1. 3. -2.
1. -2. 1.
"Inverse of A="
 -122. -273. -371.
 -273. -640. -868.
 -371. -868. -1186.

Question 2: Obtain the inverse of matrix ቂ
1 1 1
1 2 3

ቃ using Cayley

Hamilton theorem.
Output 2:
Enter matrix A =[1 1 1; 1 2 3]
 "Invalid order"

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 12

Program 6

Solving the system of homogeneous and non-
homogeneous linear algebraic equations.

System of Homogeneous Linear Algebraic Equations:

clc
A=input("Enter the coefficient matrix A")
disp(A)
detA=det(A)
disp("Determinant of A=",detA)
ifdet(A)~=0then
disp("A has trivial solution")
else
ifdet(A)==0then
disp("A has infinite number of solution")
end
end

Question 1: Find the solution of system of homogeneous
equation 𝑥 − 2𝑦 + 𝑧 = 0, 𝑥 − 2𝑦 − 𝑧 = 0, 2𝑥 − 4𝑦 − 5𝑧 = 0.
Output 1:

Enter the coefficient matrix A[1 -2 1; 1 -2 -1; 2 -4 -5]
1. -2. 1.
1. -2. -1.
 2. -4. -5.
 "Determinant of A="
 0.
 "A has infinite number of solution"

Question 2: Find the solution of system of homogeneous
equation 𝑥 + 𝑦 + 3𝑧 = 0, 3𝑥 + 4𝑦 + 4𝑧 = 0, 7𝑥 + 16𝑦 + 12𝑧 = 0.
Output 2:

Enter the coefficient matrix A[1 1 3; 3 4 4; 7 16 12]

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 13

1. 1. 3.
 3. 4. 4.
 7. 16. 12.

 "Determinant of A="

36.000000

 "A has trivial solution"

System of Non-Homogeneous Linear Algebraic
Equations:
clc
A=input("Enter the coefficient matrix A")
disp(A)
[m,n]=size(A)
B=input("Enter the matrix of constants B")
disp(B)
r1=rank(A)
disp("Rank of A=",r1)
r2=rank([AB])
disp("Rank of [A-B]=",r2)
if(m>=n&r2<n)then
disp("System is consistent and has infinitely many
solutions")
else
if(m>=n&r1==r2)then
disp("System is consistent and has unique solution")
elseif(r1~=r2)then
disp("System is inconsistent and has no solution")
elseif(m<n)then
disp("System has infinitely many solutions")
end
end

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 14

end
end
x=inv(A)*B
disp("Solution of the system",x)

Question 1: Find the solution of system of non-homogeneous
equation 10𝑥 + 5𝑦 + 2𝑧 = 10, 5𝑥 + 2𝑦 + 3𝑧 = 5, 6𝑥 + 7𝑦 + 4𝑧 = 5.
Output 1:
Enter the coefficient matrix A[10 5 2; 5 2 3; 6 7 4]
 10. 5. 2.
 5. 2. 3.
 6. 7. 4.
Enter the matrix of constants B[10; 5; 5]
10.
 5.
 5.
 "Rank of A="
3.
 "Rank of [A-B]="
3.
 "System is consistent and has unique solution"

 "Solution of the system"
1.1170213
 -0.212766
 -0.0531915

Question 2: Find the solution of system of non-homogeneous
equation 𝑥 + 2𝑦 + 𝑧 = 2, 2𝑥 + 4𝑦 + 3𝑧 = 3, 3𝑥 + 6𝑦 + 5𝑧 = 4.
Output 2:
Enter the coefficient matrix A[1 2 1; 2 4 3; 3 6 5]
 1. 2. 1.
 2. 4. 3.
 3. 6. 5.
Enter the matrix of constants B[2; 3; 4]
 2.
 3.
 4.
 "Rank of A="
2.

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 15

 "Rank of [A-B]="
2.
 "System is consistent and has infinitely many solutions"

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 16

Program 7

Finding the nth Derivative of 𝒆𝒂𝒙, trigonometric and
hyperbolic functions.

Question 1: Write a maxima program to findthe nth
derivative of 𝑒௔௫.
Program:
kill(all)$
y:%e^(a*x)$
n:4$
for i:1 thru n do (
y1:diff(y,x,i),
print("The",i,"differentiation of ",y,"is ",y1))$
Output:
"The"" "1" ""differentiation of "" "%e^(a*x)" ""is "" "a*%e^(a*x)" "
"The"" "2" ""differentiation of "" "%e^(a*x)" ""is "" "a^2*%e^(a*x)" "
"The"" "3" ""differentiation of "" "%e^(a*x)" ""is "" "a^3*%e^(a*x)" "
"The"" "4" ""differentiation of "" "%e^(a*x)" ""is "" "a^4*%e^(a*x)" "

Question 2: Write a maxima program to find the nth
derivative of sin(𝑎𝑥 + 𝑏).
Program:
kill(all)$

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 17

y:sin(a*x+b)$
n:5$
for i:1 thru n do (
y1:diff(y,x,i),
print("The",i,"differentiation of ",y,"is ",y1))$
Output:
"The"" "1" ""differentiation of "" "sin(a*x+b)" ""is "" "a*cos(a*x+b)" "
"The"" "2" ""differentiation of "" "sin(a*x+b)" ""is "" "-
a^2*sin(a*x+b)" "
"The"" "3" ""differentiation of "" "sin(a*x+b)" ""is "" "-
a^3*cos(a*x+b)" "
"The"" "4" ""differentiation of "" "sin(a*x+b)" ""is "" "a^4*sin(a*x+b)"
"
"The"" "5" ""differentiation of "" "sin(a*x+b)" ""is "" "a^5*cos(a*x+b)"
"

Examples:Write a maxima program to find the nth
derivative of the following:

1. sinh(𝑎𝑥 + 𝑏)
2. cosh(𝑎𝑥 + 𝑏)

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 18

Program 8

Finding the nth Derivative of algebraic and
logarithmic functions.

Question 1: Write a maxima program to findthe nth
derivative of algebraic function (𝑎𝑥 + 𝑏)௠.
Program:
kill(all)$
y:(a*x+b)^(m)$
n:5$
for i:1 thru n do (
y1:diff(y,x,i),
print("The",i,"differentiation of ",y,"is ",y1))$
Output:
"The"" "1" ""differentiation of "" "(a*x+b)^m" ""is ""
"a*m*(a*x+b)^(m-1)" "
"The"" "2" ""differentiation of "" "(a*x+b)^m" ""is "" "a^2*(m-
1)*m*(a*x+b)^(m-2)" "
"The"" "3" ""differentiation of "" "(a*x+b)^m" ""is "" "a^3*(m-2)*(m-
1)*m*(a*x+b)^(m-3)" "
"The"" "4" ""differentiation of "" "(a*x+b)^m" ""is "" "a^4*(m-3)*(m-
2)*(m-1)*m*(a*x+b)^(m-4)" "
"The"" "5" ""differentiation of "" "(a*x+b)^m" ""is "" "a^5*(m-4)*(m-
3)*(m-2)*(m-1)*m*(a*x+b)^(m-5)" "

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 19

Question 2: Write a maxima program to findthe nth
derivative of logarithmic function log(𝑎𝑥 + 𝑏).
Program:
kill(all)$
y:log(a*x+b)$
n:5$
for i:1 thru n do (
y1:diff(y,x,i),
print("The",i,"differentiation of ",y,"is ",y1))$
Output:
"The"" "1" ""differentiation of "" "log(a*x+b)" ""is "" "a/(a*x+b)" "
"The"" "2" ""differentiation of "" "log(a*x+b)" ""is "" "-a^2/(a*x+b)^2"
"
"The"" "3" ""differentiation of "" "log(a*x+b)" ""is ""
"(2*a^3)/(a*x+b)^3" "
"The"" "4" ""differentiation of "" "log(a*x+b)" ""is "" "-
(6*a^4)/(a*x+b)^4" "
"The"" "5" ""differentiation of "" "log(a*x+b)" ""is ""
"(24*a^5)/(a*x+b)^5" "

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 20

Program 9

Finding the nth Derivative of 𝒆𝒂𝒙𝐬𝐢𝐧(𝒃𝒙 + 𝒄)and
𝒆𝒂𝒙𝐜𝐨𝐬(𝒃𝒙 + 𝒄).

Question 1: Write a maxima program to findthe nth
derivative of 𝑒௔௫sin(𝑏𝑥 + 𝑐).
Program:
kill(all)$
y:exp(a*x)*sin(b*x+c)$
n:3$
for i:1 thru n do (
y1:diff(y,x,i),
print("The",i,"differentiation of ",y,"is ",y1))$
Output:
"The"" "1" ""differentiation of "" "%e^(a*x)*sin(b*x+c)" ""is ""
"a*%e^(a*x)*sin(b*x+c)+b*%e^(a*x)*cos(b*x+c)" "
"The"" "2" ""differentiation of "" "%e^(a*x)*sin(b*x+c)" ""is "" "-
b^2*%e^(a*x)*sin(b*x+c)+a^2*%e^(a*x)*
sin(b*x+c)+2*a*b*%e^(a*x)*cos(b*x+c)" "
"The"" "3" ""differentiation of "" "%e^(a*x)*sin(b*x+c)" ""is "" "-
3*a*b^2*%e^(a*x)*sin(b*x+c)+a^3*%e^(a*x)*
sin(b*x+c)-b^3*%e^(a*x)*cos(b*x+c)+3*a^2*b*%e^(a*x)*cos(b*x+c)"
"

Example: Write a maxima program to findthe nth
derivative of 𝑒௔௫cos(𝑏𝑥 + 𝑐).

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 21

Program 10

Finding the Taylor’s and Maclaurin’s expansions of
the given functions.
Question 1: Write a maxima program to findthe Taylor’s
and Maclaurin’s expansions of 𝑒௫ .
Program:
kill(all)$
y:exp(x)$
ts:taylor(y,x,2,4)$
ms:taylor(y,x,0,4)$
print("The Taylor's expansion of",y,"about x=2 is ")$
print(ts)$
print("The Maclaurian's expansion of",y,"is ")$
print(ms)$
Output:
"The Taylor's expansion of"" "%e^x" ""about x=2 is "" "
%e^2+%e^2*(x-2)+(%e^2*(x-2)^2)/2+(%e^2*(x-2)^3)/6+(%e^2*(x-
2)^4)/24+..." "
"The Maclaurian's expansion of"" "%e^x" ""is "" "
1+x+x^2/2+x^3/6+x^4/24+..." "

Question 2: Write a maxima program to findthe Taylor’s
and Maclaurin’s expansions of tanିଵ 𝑥.
Program:

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 22

kill(all)$
y:exp(x)$
ts:taylor(y,x,3,6)$
ms:taylor(y,x,0,6)$
print("The Taylor's expansion of",y,"about x=3 is ")$
print(ts)$
print("The Maclaurian's expansion of",y,"is ")$
print(ms)$
Output:
"The Taylor's expansion of"" "atan(x)" ""about x=3 is "" "
atan(3)+(x-3)/10-(3*(x-3)^2)/100+(13*(x-3)^3)/1500-(3*(x-
3)^4)/1250+(79*(x-3)^5)/125000-(39*(x-3)^6)/250000+..." "
"The Maclaurian's expansion of"" "atan(x)" ""is "" "
x-x^3/3+x^5/5+..." "

Example: Write a maxima program to findthe Taylor’s
and Maclaurin’s expansions of1. log (𝑥) 2. sinିଵ 𝑥 3.

log (sec 𝑥) 4.
ଵ

ଵା௫

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 23

Program 11

Finding the angle between the radius vector and
tangent.
Question 1: Write a maxima program to find the angle
between the radius vector and tangent 𝑟 = 𝑎(1 − cos 𝑡).
Program:
kill(all)$
a:1$
r: a*(1- cos(t))$
d:diff(r,t)$
b:r*(1/d)$
ta:trigreduce(trigrat(b))$
print("The tan(angle) =",ta)$
print("The angle between the radius vector and tangent is
",atan(ta))$
Output:

"The tan(angle) ="" "tan(t/2)" "
"The angle between the radius vector and
tangent is "" "atan(tan(t/2))" "

Question 2: Write a maxima program to findthe angle
between the radius vector and tangent𝑟 = 𝑎𝑡.
Question 3: Write a maxima program to findthe angle
between the radius vector and tangent𝑟 = 𝑎(1 + cos 𝑡).

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 24

Program:
kill(all)$
a:1$
r(t):= a*(1+cos(t))$
dt:ratsimp(diff(r(t),t))$
b(t):=r(t)*(1/dt)$
ta(t):=trigreduce(trigrat(b(t)))$
print("The tan(angle) =",ta(t))$
print("The angle between the radius vector and tangent is
",atan(ta(t)))$
a1:at(ta(t),[t=%pi/2])$
print("The tan(angle) =",a1)$
d:atan2(1,a1)$
print("The angle between the radius vector and tangent
at t=pi/2 is ",d)$
Output:
"The tan(angle) ="" "-cot(t/2)" "
"The angle between the radius vector and tangent is "" "-
atan(cot(t/2))" "
"The tan(angle) ="" "-1" "
"The angle between the radius vector and tangent at
t=pi/2 is "" "(3*%pi)/4" "

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 25

Program 12

Finding the curvatures of the given curves.
Question 1: Write a maxima program to find the radius
of curvature and curvature of the curve𝑦ଶ = 4𝑎𝑥 at 𝑥 =

1and 𝑎 = 1.
Program:
kill(all)$
a:1$
y:sqrt(4*a*x)$
y1:ratsimp(diff(y,x,1))$
y2:ratsimp(diff(y,x,2))$
rc:ratsimp((1+y1^2)^(3/2)/y2)$
k:ratsimp(1/rc)$
print("Radius of curvature at any point is ",rc)$
print("Radius of curvature at x=1 is ",at(rc,[x=1]))$
print("Curvature of the curve at any point is ",k)$
print("Curvature of the curve at x=1 is ",at(k,[x=1]))$
Output:
"Radius of curvature at any point is "" "-
2*x^(3/2)*((x+1)/x)^(3/2)" "
"Radius of curvature at x=1 is "" "-2^(5/2)" "
"Curvature of the curve at any point is "" "-
1/(2*x^(3/2)*((x+1)/x)^(3/2))" "
"Curvature of the curve at x=1 is "" "-1/2^(5/2)" "

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 26

Question 2: Write a maxima program to find the radius

of curvature and curvature of the curve√𝑥 + ඥ𝑦 = 1at

ቀ
ଵ

ସ
,

ଵ

ସ
ቁ.

Program:
kill(all)$
y:(1-sqrt(x))^2$
y1:ratsimp(diff(y,x,1))$
y2:ratsimp(diff(y,x,2))$
rc:ratsimp((1+y1^2)^(3/2)/y2)$
k:ratsimp(1/rc)$
print("Radius of curvature at any point is ",rc)$
print("Curvature of the curve at any point is ",k)$
print("Radius of curvature at x=1/4 & y=1/4 is
",at(rc,[x=1/4,y=1/4]))$
print("Curvature of the curve at (1/4,1/4) is
",at(k,[x=1/4,y=1/4]))$
Output:
"Radius of curvature at any point is "" "2*(-(-
2*x+2*sqrt(x)-1)/x)^(3/2)*x^(3/2)" "
"Curvature of the curve at any point is "" "1/(2*(-(-
2*x+2*sqrt(x)-1)/x)^(3/2)*x^(3/2))" "

"Radius of curvature at x=1/4 & y=1/4 is "" "1/sqrt(2)" "
"Curvature of the curve at (1/4,1/4) is "" "sqrt(2)" "

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 27

Question 3: Write a maxima program to find the radius
of curvature and curvature of the curve𝑥ଷ + 𝑦ଷ − 3𝑎𝑥𝑦 =

0at ቀ
ଷ௔

ଶ
,

ଷ௔

ଶ
ቁ.

Program:
kill(all)$
f(x,y):=x^3+y^3-3*a*x*y$
fx:ratsimp(diff(f(x,y),x,1))$
fxx:ratsimp(diff(f(x,y),x,2))$
fy:ratsimp(diff(f(x,y),y,1))$
fyy:ratsimp(diff(f(x,y),y,2))$
fxy:ratsimp(diff(fy,x,1))$
rc:ratsimp(-
(fx^2+fy^2)^(3/2)/(fx^2*fyy2*fx*fy*fxy+fy^2*fxx))$
k:ratsimp(1/rc)$
print("fx=",fx,"fy=",fy,"fxy=",fxy,"fxx=",fxx,"fyy=",fyy)$
print("Radius of curvature at x=3a/2 & y=3a/2 is
",at(rc,[x=3*a/2,y=3*a/2]))$

I SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 28

print("Curvature of the curve at (3a/2,3a/2) is
",at(k,[x=3*a/2,y=3*a/2]))$
Output:
"fx="" "3*x^2-3*a*y" ""fy="" "3*y^2-3*a*x" ""fxy="" "-3*a"
""fxx="" "6*x" ""fyy="" "6*y" "
"Radius of curvature at x=3a/2 &y=3a/2 is "" "-
(3*a)/2^(7/2)" "
"Curvature of the curve at (3a/2,3a/2) is "" "-
2^(7/2)/(3*a)" "

BLDEA’s s.B. Arts AnD K.C.P. sCiEnCE

CoLLEgE, VijAyAPur
(Affiliated to Rani Channamma University, Belagavi)

Practical’s on DSC 2
ALgEBrA-ii AnD CALCuLus-ii

(As PEr nEP-2020)

MAnuAL
B. Sc. II Semester

Name:………………………………………………………………………………………...

Class:……………………………………………………………………………………………

UUCMS No:…………………………………………………………………………………

DEPARTMENT OF MATHEMATICS

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 1

Theory Based Practical’s On Algebra-II and Calculus-II

Lab Practical’s:

Part A:

1. Program for verification of binary operations.
2. Computation of identity and inverse elements of a

group.
3. Program to construct Cayley’s table and test abelian

for given finite set.
4. Program to find all possible cosets of the given finite

group.
5. Program to find generators and corresponding

possible subgroups of a cyclic group.
6. Programs to verification of Lagrange’s theorem with

suitable examples.

Part B:

7. Program to verify the Euler’s 𝜙 function for a given
finite group.

8. Program to verify the Euler’s theorem and its
extension.

9. Programs to construct series using Maclaurin’s
expansion for functions of two variables.

10. Program to evaluate the line integrals with constant
and variable limits.

11. Program to evaluate the Double integrals with
constant and variable limits.

12. Program to evaluate the Triple integrals with
constant and variable limits.

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 2

Program 1

Program for verification of Binary operation.
A binary operation ∗ in a set 𝐺 is a mapping ∗∶ 𝐺 × 𝐺 → 𝐺.
Question 1: Write a maxima program to verify addition
modulo 6 i.e. 𝐺 = {0, 1, 2, 3, 4, 5} is a binary operation or
not.
Program:

kill(all)$
 S:{0,1,2,3,4,5}$
 bo(a,b):=mod(a+b,6)$
 flag:1$
 for a in S do(
 for b in S do (
 if not elementp(bo(a,b),S) then flag:0))$
 if flag = 1 then
 disp("Given operation is a binary operation")
 else
 disp("Given operation is not binary operation")$
Output:
"Given operation is a binary operation"

Examples:Verify binary operations for the following
group

1. 𝐺 = {0,1,2} under addition modulo 3
2. 𝐺 = {0,1,2,3} under addition modulo 4
3. 𝐺 = {0,1,2,3,4,5,6} under multiplication modulo 7

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 3

Program 2

Computation of identity and inverse elements of a
group.
 An element 𝑒 is called an identity element of the non-

empty set 𝐺if ∀𝑎 ∈ 𝐺 ⇒ 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎.
 An element 𝑎ିଵ is the inverse of an element 𝑎 in 𝐺 if

∀𝑎 ∈ 𝐺 ⇒ 𝑎 ∗ 𝑎ିଵ = 𝑎ିଵ ∗ 𝑎 = 𝑒.
Question 1: Write a maxima program to find the identity
and inverse element of the group 𝑧 = {1,5,7,11} under
multiplication modulo 12.
Program:
 kill(all)$
 z:{1,5,7,11}$
 bo(a,b):=mod(a*b,12)$
 e:a$
 fori in z do
 (
 flag:1,
 for j in z do
 ifbo(i,j)#j and bo(j,i)# j then
 flag:0,
 if flag=1 then
 e:i
)$
 if e # x then
 print("The identity element is",e)
 else
 print("The identity element does not exist")$
 w: { }$
 fori in z do
 (
 for j in z do
 ifbo(i, j)=e or bo(j, i)=e then
 (
 print("Inverse of",i,"is",j),
 w :adjoin(i,w)

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 4

)
)$
 ifsetequalp(z,w) then
 print("Inverse law is satisfied")
 else
 print("inverse law is not satisfied")$
Output:
"The identity element is"" "1" "
"Inverse of"" "1" ""is"" "1" "
"Inverse of"" "5" ""is"" "5" "
"Inverse of"" "7" ""is"" "7" "
"Inverse of"" "11" ""is"" "11" "
"Inverse law is satisfied"" "

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 5

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 6

Examples:Write a maxima program to find the identity
and inverse element of the following group:
1. 𝐺 = {0,1,2,3,4}under addition modulo 5.
2. 𝐺 = {2,4,6,8}under multiplication modulo 10.
3. 𝑍ହ – {0} under multiplication modulo 5.
4. 𝐺 = {1,3,7,9}under multiplication modulo 10.
5. (𝑍଻, +଻).

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 7

Program 3

Program to construct Cayley’s table and test abelian
for given finite set.
 If 𝐺 is a finite group with the binary operation ∗, the

Cayley table of 𝐺 is a table with rows and columns
labelled by the elements of the group. If entry in the
row is 𝑔 and column is ℎ, then corresponding entry of
table is 𝑔 ∗ ℎ.

 A group G with binary operation ∗, is said to be
abelian group if ∀𝑎, 𝑏 ∈ 𝐺, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎.

 Group is abelian if Cayley table is symmetric along its
diagonal axis.

Question 1: Write a maxima program to construct
Cayley’s table and test abelianfor (𝑍ଷ, +ଷ)
Program:
kill(all)$
z:{0,1,2}$
print("Given set is",z)$
n:3$
CT:zn_add_table(n)$
print("Cayley's table under addition modulo 3 is",CT)$
TCT:transpose(CT)$
print("The transpose of matrix CT is",TCT)$
if CT=TCT then
disp("Cayley table is symmetric, Group is abelian")
else
disp("Cayley table not is symmetric, Group is not
abelian")$
Output:
"Given set is"" "{0,1,2}" "
"Cayley's table under addition modulo 3 is"" "matrix(
 [0, 1, 2],
 [1, 2, 0],
 [2, 0, 1]
)" "

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 8

"The transpose of matrix CT is"" "matrix(
 [0, 1, 2],
 [1, 2, 0],
 [2, 0, 1]
)" "
"Cayley table is symmetric, Group is abelian"

Examples:

1. Construct(𝑍଼, +଼)
2. Construct (𝑍ଵଶ, +ଵଶ)

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 9

Program 4

Program to find all possible cosets of the given finite
group.
 Let 𝐻 be any subgroup of a group 𝐺 and 𝑎 be any

element of 𝐺. Then the set,𝐻𝑎 = {ℎ𝑎: ℎ𝜖𝐻} is called
right coset of 𝐻 in 𝐺 genarated by 𝑎 and the set
𝑎𝐻 = {𝑎ℎ: ℎ𝜖𝐻}is called left coset of 𝐻 in 𝐺 genarated
by 𝑎 with respect to multiplicative binary operation.

 𝐻 + 𝑎 = {ℎ + 𝑎 ∶ ℎ𝜖𝐻 }is right coset and 𝑎 + 𝐻 = {𝑎 + ℎ ∶
ℎ𝜖𝐻} is left coset of 𝐻 with respect to additive binary
operation.

Question 1: Write a maxima program to find all distinct
left cosest of the subgroup H = {0 , 4 , 8} in the group
(𝑍ଵଶ, +ଵଶ) and find the index.
Program:

kill(all)$
 G:{0,1,2,3,4,5,6,7,8,9,10,11}$
 H:{0,4,8}$
 bo(x,y):=mod(x+y,12)$
 c:{ }$
 fori in G do(
 s:{ },
 for j in H do
 s: adjoin(bo(j,i),s),
 c: adjoin(s,c))$
 print("Left cosets= ",c)$
 print("The index of H in G is", cardinality(c))$
Output:
"Left cosets= "" "{{0,4,8},{1,5,9},{2,6,10},{3,7,11}}" "
"The index of H in G is"" "4" "

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 10

Examples:

1. Find all the rightcosets of the subgroup 𝐻 = {0,3} in
the group (𝑍଺, +଺).

2. Find all the distinct cosets of 𝐻 = {0,3,6}in (𝑍ଽ, +ଽ).

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 11

Program 6

Programs to verification of Lagrange’s theorem with
suitable examples.

LagrangesThoerem: If𝐻 is a sunbgroup of finite graoup
𝐺, then𝑂(𝐻) divides 𝑂(𝐺).

Question 1: Write a maxima program toverification of
Lagrange's theorem with 𝐺 = {1, −1, 𝑖, −𝑖}𝑠𝑢𝑏𝑠𝑒𝑡𝐻 =

{1, −1}𝑜𝑓𝐺 under multiplication.

Program:
kill(all)$

 G:set(1, -1, %i, -%i)$
 print("Group G =",G)$
 H:set(1, -1)$
 print("Sub group H =",H)$
 n:length(G)$
 print("Order of group G = O(G)=",n)$
 m:length(H)$
 print("Order of sub group H = O(H)=",m)$
 r: mod(n,m)$
 if r=0 then
 disp("O(H) devides O(G), Lagrange's theorem
verified")
 else
 disp("Lagrange's theorem is not verified")$
"Group G ="" "{-1,1,-%i,%i}" "
"Sub group H ="" "{-1,1}" "
"Order of group G = O(G)="" "4" "
"Order of sub group H = O(H)="" "2" "
"O(H) devides O(G), Lagrange's theorem verified"

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 12

Examples:Verify Lagrange's theorem for the following:
1. 𝐺 = {1, −1, 𝑖, −𝑖}is a group and subset 𝐻 = {1, 𝑖}under

multiplication.
2. 𝐺 = {1, −1, 𝑖, −𝑖}is a group and subset 𝐻 = {1, −𝑖}under

multiplication.

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 13

Program 7

Program to verify the Euler’s 𝜙 function for a given
finite group.

Euler’s number:Let ∅ (1) = 1, and for any integer 𝑛 > 1,
let ∅ (𝑛) denote the number of positive integers less than
𝑛 and relatively prime to 𝑛.

n 1 2 3 4 5 6 7 9 10
Positive
integers
less than
𝒏 and
relatively
prime to
𝒏.

1 1 1,2 1,3
1,3,
4

1,5
1,2,
3,4,
5,6

1,2,
4,5,
7,8

1,3,
7,9

∅ (𝒏) 1 1 2 2 3 2 6 6 4

Theorem: The set of all positive integers lessthan n and
relatively prime to n form a group under multiplication modulo n.

Example:𝐺 = {1, 2, 3, 4, 5, 6} is a group under multiplication
modulo 7.

Euler’s Theorem: Let 𝑎 and 𝑛 be integers such that

𝑛 > 0and 𝑔𝑐𝑑(𝑎, 𝑛) = 1. Then 𝑎∅(௡) ≡ 1 (𝑚𝑜𝑑 𝑛).

Question 1: Write a maxima program to verify the Euler’s 𝜙

function for a given finite group 𝐺 = {1, 2, 3, 4, 5, 6} under
multiplication modulo 7.

Program:

kill(all)$

 G:[1, 2, 3, 4, 5, 6]$

 n:7$

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 14

 flag:1$

 print("Given group G=",G)$

 print("n=",n)$

 φ:length(G)$

 print("O(G)= φ(10)=",φ)$

 fori thru length(G) do(

 if not mod(G[i]^φ,n)=1 then flag:0)$

 if flag=1 then

 print ("Euler's theorem is verified")

 else

 print("Euler's theorem is not verified")$

Output:
"Given group G="" "[1,2,3,4,5,6]" "

"n="" "7" "

"O(G)= φ(10)="" "6" "

"Euler's theorem is verified"" "

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 15

Examples:Write a maxima program to verify the Euler’s 𝜙
function for a given finite group

1. 𝐺 = {1,2, 4, 5, 7, 8} under multiplication modulo 9.
2. 𝐺 = {1, 5} under multiplication modulo 6.
3. 𝐺 = {1, 3} under multiplication modulo 4.

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 16

Program 8

Program to verify the Euler’s theorem and its
extension.
Homogeneous Function: A function 𝑢 = 𝑓(𝑥, 𝑦) is said to
homogeneousfunctionof degree𝑛 in 𝑥 & 𝑦 if anyone the
following condition satisfies:

(i) 𝑓(𝑥, 𝑦) = 𝑥௡𝐹 ቀ
௬

௫
ቁfor some function F.

(ii) 𝑓(𝑥, 𝑦) = 𝑦௡𝐹 ቀ
௫

௬
ቁfor some function F.

(iii) 𝑓(𝑡𝑥, 𝑡𝑦) = 𝑡௡𝑓(𝑥, 𝑦).

Euler’s Theorem: If 𝑢 = 𝑓(𝑥, 𝑦) is a homogeneous
function of degree 𝑛 in 𝑥 & 𝑦, then

𝑥
డ௨

డ௫
+ 𝑦

డ௨

డ௬
= 𝑛 ∙ 𝑢. That is 𝑥𝑢௫ + 𝑦𝑢௬ = 𝑛 ∙ 𝑢.

Question 1: Verification of Euler’s theorem for given
homogeneous function 𝑢 = 𝑎𝑥ଶ + 2ℎ𝑥𝑦 + 𝑏𝑦ଶ.

Program:

 kill(all)$
 u:a*x*x+2*h*x*y+b*y*y$
 print("u = ",u)$
 n:2$
 ux:diff(u,x,1)$
 uy:diff(u,y,1)$
 print("ux =",ux)$
 print("uy =",uy)$
 lhs:ratsimp(x*ux+y*uy)$
 rhs:ratsimp(n*u)$
 print("LHS =",lhs)$
 print("RHS =",rhs)$
 if lhs=rhs then
 print("Euler’s Theorem is verified")
 else

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 17

 print("Euler’s Theorem is not verified")$
Output:
"u = "" "b*y^2+2*h*x*y+a*x^2" "
"ux ="" "2*h*y+2*a*x" "
"uy ="" "2*b*y+2*h*x" "
"LHS ="" "2*b*y^2+4*h*x*y+2*a*x^2" "
"RHS ="" "2*b*y^2+4*h*x*y+2*a*x^2" "

Examples: Verification of Euler’s theorem for following
homogeneous functions:

1. 𝑢 =
௫௬

௫ା௬

2. 𝑢 =
௫యା௬య

௫ା௬

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 18

3. 𝑢 = sinିଵ ቀ
௫

௬
ቁ + tanିଵ ቀ

௬

௫
ቁ.

4. 𝑢 =
௫యା௫మ௬ି௫௬మାଶ௬య

௫ା௬

Euler’s Extension Theorem: If 𝑢 = 𝑓(𝑥, 𝑦) is a
homogeneous function of degree 𝑛 in 𝑥 & 𝑦, then

𝑥ଶ
𝜕ଶ𝑢

𝜕𝑥ଶ
+ 2𝑥𝑦

𝜕ଶ𝑢

𝜕𝑥𝜕𝑦
+ 𝑦ଶ

𝜕ଶ𝑢

𝜕𝑦ଶ
= 𝑛(𝑛 − 1) ∙ 𝑢.

That is𝑥ଶ𝑢௫௫ + 2𝑥𝑦𝑢௫௬ + 𝑦ଶ𝑢௬௬ = 𝑛(𝑛 − 1) ∙ 𝑢.

Question 2: Verification of Euler’s Extension theorem for
given homogeneous function 𝑢 = 𝑎𝑥ଶ + 2ℎ𝑥𝑦 + 𝑏𝑦ଶ.

Program:

 kill(all)$
 u:a*x*x+2*h*x*y+b*y*y$
 print("u = ",u)$
 n:2$
 ux:diff(u,x,1)$
 uy:diff(u,y,1)$
 uxx:diff(ux,x,1)$
 uyy:diff(uy,y,1)$
 uxy:diff(uy,x,1)$
 print("ux =",ux)$
 print("uy =",uy)$
 print("uxx =",uxx)$
 print("uyy =",uyy)$
 print("uxy =",uxy)$
 lhs:ratsimp(x*x*uxx+2*x*y*uxy+y*y*uyy)$
 rhs:ratsimp(n*(n-1)*u)$
 print("LHS =",lhs)$

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 19

 print("RHS =",rhs)$
 if lhs=rhs then
 print("Euler’s Extension Theorem is verified")
 else
 print("Euler’s Extension Theorem is not verified")$
Output:
"u = "" "b*y^2+2*h*x*y+a*x^2" "
"ux ="" "2*h*y+2*a*x" "
"uy ="" "2*b*y+2*h*x" "
"uxx ="" "2*a" "
"uyy ="" "2*b" "
"uxy ="" "2*h" "
"LHS ="" "2*b*y^2+4*h*x*y+2*a*x^2" "
"RHS ="" "2*b*y^2+4*h*x*y+2*a*x^2" "
"Euler’s Extension Theorem is verified"" "

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 20

Examples: Verification of Euler’s Extension theorem for
following homogeneous functions:

1. 𝑢 =
௫యା௬య

௫ା௬

2. 𝑢 = sinିଵ ቀ
௫

௬
ቁ + tanିଵ ቀ

௬

௫
ቁ

3. 𝑢 =
௫యା௫మ௬ି௫௬మାଶ௬య

௫ା௬

4. 𝑢 = 𝑥ଷ + 𝑦ଷ

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 21

Program 9

Program to construct series using Maclaurin’s
expansion for function of two variables.
Question 1: Write a maxima program to find Maclaurin’s
expansion of 𝑢 = 𝑒௫ cos 𝑦.

Program:
kill(all)$

 u:%e^(x)*(cos(y))$
 print("The Maclurian's expansion of",u," is")$
 s:taylor(u,[x,y],0,4)$
 print(s)$
Output:
"The Maclurian's expansion of"" "%e^x*cos(y)" "" is"" "
1+x+(x^2-y^2)/2+(x^3-3*y^2*x)/6+(x^4-
6*y^2*x^2+y^4)/24+..." "

Examples:Write a maxima program to find Maclaurin’s
expansion for following functions:

1. 𝑢 = 𝑒௫ log(1 + 𝑦)
2. 𝑢 = 𝑒(௫మା௬మ)
3. 𝑢 = sin(𝑥 + 𝑦)

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 22

Program 10

Program to evaluate the line integrals with constant
and variable limits.
Question 1: Write a maxima program to evaluate line

integral with constant limits∫ 𝑦 𝑑𝑥 − 𝑥 𝑑𝑦
௖

 along the curve

𝑐: 𝑦 = 𝑥ଶ from (0, 0) to (1, 1).

Program:
kill(all)$

 depends (y,x)$
 y:x^2$
 Integrand:y*diff(x,x)-x*diff(y,x)$
 I:integrate (Integrand,x,0,1)$
 print("Integrand =",Integrand)$
 print("Integral value = ",I)$
Output:
"Integrad ="" "-x^2" "
"Integral value"" "-1/3" "

Examples:Write a maxima program to evaluate following
line integral with constant limits:

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 23

1. ∫ (3𝑥 + 𝑦)𝑑𝑥 + (2𝑦 − 𝑥)𝑑𝑦
௖

 along the curve 𝑦 = 𝑥ଶ + 1
form (0, 1) to (3, 10).

2. ∫ (2𝑥𝑦 − 1)𝑑𝑥 + (𝑥ଶ + 1)𝑑𝑦
௖

 along the parabola
𝑦 = 𝑥 + 1 form (0, 1) to (2, 3).

3. ∫ (𝑥 + 𝑦)𝑑𝑥 + (𝑦 − 𝑥)𝑑𝑦
௖

 along the parabola 𝑦ଶ = 𝑥
form (1, 1) to (4, 2).

Question 2: Write a maxima program to evaluate line

integral with variable limits∫ 𝑥𝑦 𝑑𝑥 + 𝑥ଶ𝑧 𝑑𝑦 + 𝑥𝑦𝑧 𝑑𝑧
௖

along the curve 𝑐: 𝑥 = 𝑒௧ , 𝑦 = 𝑒ି௧ , 𝑧 = 𝑡ଶand 1 ≤ 𝑡 ≤ 2.
Program:

kill(all)$
 depends([x,y,z],t)$
 x:%e^t$
 y:%e^(-t)$
 z:t^2$
 Integrand: x*y* diff(x,t)+x^2*z*diff(y,t)+x*y*z*diff(z,t)$
 I:integrate(Integrand,t,1,2)$
 print("Integrand =",Integrand)$
 print("Integral value = ",I)$
Output:
"Integrand ="" "-t^2*%e^t+%e^t+2*t^3" "

"Integral value = "" "-(2*%e^2-15)/2" "

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 24

Examples:Write a maxima program to evaluate following
line integral with variable limits:

1. ∫ (3𝑥 − 2𝑦)𝑑𝑥 + (𝑦 + 2𝑧)𝑑𝑦 − 𝑥ଶ 𝑑𝑧
௖

where𝑐 is the curve
given by 𝑥 = 𝑡, 𝑦 = 2𝑡ଶ, 𝑧 = 3𝑡ଷ and 0 ≤ 𝑡 ≤ 1.

2. ∫ (𝑥ଶ − 𝑦)𝑑𝑥 + (𝑦ଶ + 𝑥)𝑑𝑦
௖

where𝑐 is the curve given by
𝑥 = 𝑡, 𝑦 = 𝑡ଶ + 1 and 0 ≤ 𝑡 ≤ 1.

3. ∫ 𝑥 𝑑𝑥 − 𝑦 𝑑𝑦
௖

along the circle 𝑐: 𝑥 = 𝑎 cos 𝑡 , 𝑦 = 1 + sin 𝑡

and −
గ

ଶ
≤ 𝑡 ≤ 0.

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 25

Program 11

Program to evaluate the double integrals with
constant and variable limits.
Question 1: Write a maxima program to evaluate double

integral with constant limits∫ ∫ 𝑥ଷ𝑒௬𝑑𝑥 𝑑𝑦
ଶ

଴

ଵ

଴
.

Program:
(%i4) kill(all)$
 Integrand:x^3*%e^(y)$
 I:integrate(integrate(Integrand,x,0,2),y,0,1)$
 print("Integrand =",Integrand)$
 print("Integral value = ",I)$
Output:
"Integrand ="" "x^3*%e^y" "
"Integral value = "" "4*(%e-1)" "

Examples:Write a maxima program to evaluate following
double integral with constant limits:

1. ∫ ∫ (𝑥 + 𝑦)𝑑𝑥𝑑𝑦
ଶ

଴

ଵ

଴

2. ∫ ∫ (𝑥ଶ + 𝑦ଶ)𝑑𝑦𝑑𝑥
௕

଴

௔

଴

3. ∫ ∫ sin 𝑥 cos 𝑦 𝑑𝑥𝑑𝑦
ഏ

ల
଴

ഏ

మ
଴

4. ∫ ∫
ଵ

(௫ା௬ାଵ)
𝑑𝑥𝑑𝑦

ଵ

଴

ଵ

଴

5. ∫ ∫ (𝑥𝑦 + 𝑒௬)𝑑𝑥𝑑𝑦
ସ

ଵ

ସ

ଷ

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 26

Question 2: Write a maxima program to evaluate double

integral with variable limits∫ ∫ 𝑥𝑦 𝑑𝑦 𝑑𝑥
௫

଴

ସ

ଵ
.

Program:
kill(all)$

 Integrand:x*y$
 I: integrate(integrate(Integrand,y,0,x),x,1,4)$
 print("Integrand =",Integrand)$
 print("Integral value = ",I)$
Output:
"Integrand ="" "x*y" "
"Integral value = "" "255/8" "

Examples:Write a maxima program to evaluate following
double integral with variable limits:

1. ∫ ∫
ௗ௬ ௗ௫

ଵା௫మା௬మ

√ଵା௫మ

଴

ଵ

଴

2. ∫ ∫ 𝑥(𝑥ଶ + 𝑦ଶ)𝑑𝑦𝑑𝑥
௫మ

଴

ଶ

଴

3. ∫ ∫ ඥ𝑎ଶ − 𝑥ଶ − 𝑦ଶ𝑑𝑦𝑑𝑥
√௔మି௫మ

଴

௔

଴

4. ∫ ∫ 𝑑𝑥𝑑𝑦
ୱ୧୬ ௬

଴

గ

଴

5. ∫ ∫ 𝑒
ೣ

೤𝑑𝑦𝑑𝑥
௬మ

଴

ଵ

଴

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 27

Program 12

Program to evaluate the triple integrals with constant
and variable limits.
Question 1: Write a maxima program to evaluate triple

integral with constant limits∫ ∫ ∫ (𝑥ଶ + 𝑦ଶ + 𝑧ଶ)𝑑𝑥 𝑑𝑦 𝑑𝑧
ଵ

ିଵ

ଵ

଴

ଶ

ଵ
.

Program:
(%i4) kill(all)$
 Integrand:x^2+y^2+z^2$

I:integrate(integrate(integrate(Integrand, x, -
1,1),y,0,1),z,1,2)$

 print("Integrand =",Integrand)$
 print("Integral value = ",I)$
Output:

"Integrand ="" "z^2+y^2+x^2" "
"Integral value = "" "6" "

Examples:Write a maxima program to evaluate following
triple integral with constant limits:

1. ∫ ∫ ∫ 𝑒௫ା௬ା௭𝑑𝑥 𝑑𝑦 𝑑𝑧
ଵ

଴

ଵ

଴

ଵ

ଵ

2. ∫ ∫ ∫ 𝑥ଶ𝑦𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧
ଷ

ଵ

ଶ

଴

ଵ

ଵ

3. ∫ ∫ ∫
ଵ

௫௬௭
𝑑𝑥 𝑑𝑦 𝑑𝑧

ଷ

ଶ

ିଵ

ିଶ

ଶ

ଵ

4. ∫ ∫ ∫ ቀ
௫

௬
+

௬

௭
+

௭

௫
ቁ 𝑑𝑧 𝑑𝑦 𝑑𝑥

ଶ

ଶ

ଶ

ଵ

ଶ

ଵ

II SEMESTER

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 28

Question 2: Write a maxima program to evaluate triple

integral with variable limits∫ ∫ ∫ (𝑥 + 𝑦 + 𝑧)𝑑𝑥 𝑑𝑦 𝑑𝑧
௫ା௭

௫ି௭

௭

଴

ଵ

ିଵ

Program:
kill(all)$

 Integrand:x+y+z$
I:integrate(integrate(integrate(Integrand,x,x-z
,x+z),y,0,z),z,-1,1)$

 print("Integrand =",Integrand)$
 print("Integral value = ",I)$
Output:
"Integrand ="" "z+y+x" "
"Integral value = "" "(8*x+3)/6-(4*x-9)/6" "

Examples:Write a maxima program to evaluate following
triple integral with variable limits:

1. ∫ ∫ ∫ 𝑒௫ା௬ା௭𝑑𝑥 𝑑𝑦 𝑑𝑧
ଵ

଴

ଵ

଴

ଵ

ଵ

2. ∫ ∫ ∫ 𝑥𝑦𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥
ඥ௔మି௫మି௬మ

଴

√௔మି௫మ

଴

௔

଴

BLDEA’s s.B. Arts AnD K.C.P. sCiEnCE

CoLLEgE, VijAyAPur
(Affiliated to Rani Channamma University, Belagavi)

Practical’s on DSC 3
orDinAry DiFFErEntiAL EQuAtion

AnD rEAL AnALysis-i
(As PEr nEP-2020)

MAnuAL
B. Sc. III Semester

Name:………………………………………………………………………………………...

Class:……………………………………………………………………………………………

UUCMS No:…………………………………………………………………………………

DEPARTMENT OF MATHEMATICS

1 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program I: Verification of Exact Differential Equation.

Maxima code to verify the exactness of the differential equation

(𝒙𝟐 − 𝒂𝒚)𝒅𝒙 − (𝒂𝒙 − 𝒚𝟐)𝒅𝒚 = 𝟎 .

kill(all)$

z:(x^2−a·y)·dx−(a·x−y^2)·dy$

m:coeff(z,dx)$

n:coeff(z,dy)$

print("M=",m)$

print("N=",n)$

my:ratsimp(diff(m,y))$

nx:ratsimp(diff(n,x))$

print("Partial derivative of m wrt y=",my)$

print("Partial derivative of n wrt x=",nx)$

ny:coeff(n,x,0)$

intm:integrate(m,x)$

intn:integrate(ny,y)$

if(my=nx) then

(

disp("The given equation is exact"),

zs:intm+intn,

print("The solution is:"),

disp(zs+c)

)

else

disp("The given equation is not exact");

2 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Output:

𝑀 = (𝒙𝟐 − 𝒂𝒚)

𝑁 = (𝒂𝒙 − 𝒚𝟐)

Partial derivative of m wrt y= -a

Partial derivative of n wrt x= -a

The given equation is exact

The solution is:

𝑦ଷ

3
− 𝑎𝑥𝑦 +

𝑥ଷ

3
+ 𝑐

Example:

1. Solve (3𝑥ଶ + 6𝑥𝑦ଶ)𝑑𝑥 + (6𝑥𝑦ଶ + 4𝑦ଷ)𝑑𝑦 = 0

2. Solve (𝑎ଶ − 2𝑥𝑦 − 𝑦ଶ)𝑑𝑥 + (𝑥 + 𝑦)ଶ𝑑𝑦 = 0

3. Solve 𝑠𝑒𝑐ଶ𝑥𝑡𝑎𝑛𝑦𝑑𝑥 + 𝑠𝑒𝑐ଶ𝑡𝑎𝑛𝑥𝑑𝑦 = 0

3 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program II: Solution of differential equations that are solvable for x.

Maxima code to find the solution of the differential equation 𝒙 = 𝒚 + 𝒑.

kill(all)$

x:y+p$

x(y):=y+p(y)$

d:diff(x(y),y)$

eq:1/p-d$

q:solve(eq,'diff(p(y),y,1))$

print(q)$

sol1:integrate(1,y)=-integrate((p/(p-1)),p)+c$

print("The parametric solution of the given problem is x=",x,"and",sol1)$

Output:

൤
d

dy
p(y) = −

p − 1

p
൨

The parametric solution of the given problem is x = y + p and 𝑦 = −𝑝 − log(𝑝 − 1) + 𝑐

Example:

1. Solve y = 2px + yଶpଷ

2. Solve y − 2px + ypଶ = 0

3. Solve yଶlogy = xpy + pଶ

4 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program III: Solution of differential equations that are solvable for y.

Maxima code to find the solution of the differential equation 𝒚 = 𝒔𝒊𝒏𝒑 − 𝒑𝒄𝒐𝒔𝒑

kill(all)$

y:sin(p)−p·cos(p)$

y(x):=sin(p(x))−p(x)*cos(p(x))$

d:diff(y(x),x)$

q:p(x)−d$

solve(q,'diff(p(x),x,1))$

sol:integrate(1,x)=integrate(sin(p),p)+c$

print("The parametric solution y=",y,"and",sol)$

Output:

 The parametric solution y = sinp − pcosp and 𝑥 = 𝑐 − cos(𝑝)

Examples:

1. Solve y = 2px + pସxଶ

2. Solve y = −px + xସpଶ

3. Solve y = 2px − pଶ

5 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program IV: Solution of differential equations that are solvable for p.

Maxima code to find the solution of the differential equation 𝒙𝟐𝒑𝟐 + 𝒙𝒚𝒑 − 𝟔𝒚𝟐 = 𝟎

kill(all)$

equ:x^2·p^2+x·y·p−6·y^2$

solve(equ,p)$

r:subst(p='diff(y,x),%)$

r1:r[1]$

ode2(r1,y,x)$

sol1:(lhs(%)−rhs(%))$

r2:r[2]$

ode2(r2,y,x)$

sol2:(lhs(%)−rhs(%))$

print("The complete solution is:",sol1·sol2=0)$

Output:

The complete solution is: ቀ𝑦 −
%௖

௫య
ቁ (𝑦 − %𝑐𝑥ଶ) = 0

Examples:

1. Solve 𝑝ଶ + 𝑝 = 6

2. Solve 𝑝ଶ − 5𝑝 − 6 = 0

3. Solve 𝑝ଶ − 7𝑝 + 12 = 0

6 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program V: To find the singular solution by using Clairaut’s form.

Maxima code to find the solution of the differential equation 𝒚 = 𝒑𝒙 −
𝒂

𝒑
.

kill(all)$

A:y−p·x−a/p$

B:subst(p=c,A=0)$

print("The general solution is",B)$

C:diff(A,p)$

D:solve(C,p)$

a:2$

print("The singular solution is")$

for i:1 thru length(D) do(

E[i]:subst(p=rhs(D[i]),A=0),

disp(radcan(E[i])));

Output:

The general solution is 𝑦 − 𝑐𝑥 −
௔

௖
= 0

The singular solution is

𝑦 + 2√𝑎√𝑥 = 0

𝑦 − 2√𝑎√𝑥 = 0

Examples:

1. Find the general solution of p = log(𝑦 − 𝑝𝑥)

2. Find the general solution of sinpxcosy − cospxsiny = p

3. Find the general solution of(𝑥ଶ − 1)𝑝ଶ − 2𝑥𝑦𝑝 + 𝑦ଶ − 1 = 0

7 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program VI: Examining the Convergence of the Sequence.

Maxima code to check the convergence of xn=ቀ𝟏 +
𝟏

𝒏
ቁ

𝒏

.

kill(all)$

xn:(1+1/n)^n;

lim:limit(xn,n,inf);

if abs(lim)=inf then

print("sequence is divergent")

elseif abs(lim)#inf and abs(lim)#ind then

print("sequence is convergent")

else

print("Sequence is oscillatory")$

Output:

൬𝟏 +
𝟏

𝒏
൰

𝒏

%𝒆

Sequence is convergent

Examples:

1.
ଶ୬ାଷ

ଷ୬ାସ

2. 1 −
ଵ

௡

3.
ଷ୬ାସ

ଶ୬ାଵ

8 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program VII :Verification of Exponential Series.

Maxima code to verify the exponential series :∑ ቀ
𝒏𝟑

𝒏!
ቁஶ

𝒏ୀ𝟏

kill(all)$

load("simplify_sum")$

u(n):=n^3/factorial(n)$

S:sum(u(n),n,1,inf)$

print("The given series is:", S)$

s1:simplify_sum(S)$

print("Sum of the series",s1)$

Output:

The given series is:∑ ቀ
𝒏𝟑

𝒏!
ቁஶ

𝒏ୀ𝟏

Sum of the series is 5%𝑒

Examples:

1. ∑
ଶ೙షభ

(௡ାଵ)!

ஶ
௡ୀଵ

2. ∑
௡మ

௡!

ஶ
௡ୀଵ

3. ∑
௡(௡ାଵ)

ଶ௡!

ஶ
௡ୀଵ

9 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program VIII: Verification of Logarithmic Series.

Maxima code to verify the logarithmic series ∑ (ି𝟏)𝒏శ𝟏𝒙𝒏

𝒏

ஶ
𝒏ୀ𝟏

kill(all)$

u(n):=((−1)^(n+1)·(x)^n/n)$

s:sum(u(n),n,1,inf);

load("simplify_sum")$

sum:simplify_sum(s)$

print("Sum of the series",sum)$

Output:

෍
(−1)௡ାଵ𝑥௡

𝑛

ஶ

௡ୀଵ

Sum of the series is:log (𝑥 + 1)

Examples:

1. ∑
୶౤

୬

ஶ
୬ୀଵ

2. ∑
(ିଵ)౤శభ

୬

ஶ
୬ୀଵ

3. ∑
ଵ

୬
−

ଶ

ଶ୬ାଵ

ஶ
୬ୀଵ

10 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program IX: De’Alembert’s Ratio Test

Maxima code to check the convergence of the series ∑
𝟏

𝒏𝟐
ஶ
𝒏ୀ𝟏 .

kill(all)$

u(n):=1/n^2;

D:limit(u(n+1)/u(n),n,inf);

if D<1 then

disp("By ratio test the given series is convergent")

else

if D>1 then

disp("By ratio test the given series is divergent")

else

disp("Ratio test fails")$

Output:

𝑢(𝑛) ≔
1

𝑛ଶ

1

Ratio test fails

Examples:

1. ∑
௡!

௡

ஶ
௡ୀଵ

2. ∑
௡మ

ଷ೙
ஶ
௡ୀଵ

3. ∑ ට
௡ାଵ

௡ାଶ

ஶ
௡ୀଵ

11 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program X: Cauchy’s Root Test :

Maxima code to check the convergence of the series ∑
𝒏𝟐

(𝒏ା𝟏)𝒏𝟐𝒏
ஶ
𝒏ୀ𝟏

kill(all)$

u(n):=(n/(2·(n+1)))^n$

s:sum(u(n),n,1,inf);

disp("The given series is:",s)$

C:limit((u(n))^(1/n),n,inf);

if C<1 then

disp("By cauchy's root test series is convergent")

else

if C>1 then

disp("By cauchy's root test series is divergent")

else

disp("Cauchy's test fails")$

Output:

The given series is:

෍
𝒏𝟐

(𝒏 + 𝟏)𝒏𝟐𝒏

ஶ

𝒏ୀ𝟏

1

2

By cauchy's root test series is convergent

Example:

1. ∑ (1 +
ଵ

௡
)௡మஶ

௡ୀଵ

12 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

2. ∑ ൤ቀ
௡ାଵ

௡
ቁ − ቀ

௡ାଵ

௡
ቁ

௡ାଵ

൨
௡

ஶ
௡ୀଵ

3. ∑
௡೙శభ

(௡ାଵ)೙
ஶ
௡ୀଵ

13 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program XI: Convergence of the Alternating Series Using Leibnitz’s Theorem.

Maxima code to check the convergence of the series ∑
(ି𝟏)𝒏ష𝟏

√𝒏ି𝟏

ஶ
𝒏ୀ𝟏

kill(all)$

u(n):=1/sqrt(n−1)$

s:sum(((−1)^(n−1))·u(n),n,1,inf)$

print("The given series is:",s)$

L:limit(u(n),n,inf);

if L=0 and u(101)<u(100)then

print("By Leibnitz's test series is convergent")

else

print("By Leibnitz's test series is not convergent")$

Output:

The given series is: ∑
(ି𝟏)𝒏ష𝟏

√𝒏ି𝟏

ஶ
𝒏ୀ𝟏

0

By Leibnitz's test series is convergent

Example:

1. ∑ (−1)𝒏ା𝟏 ୬

𝟐𝒏ି𝟏

ஶ
𝒏ୀ𝟏

2. ∑ (−1)𝒏 ଵ

𝒏

ஶ
𝒏ୀ𝟏

3. ∑ (−1)𝒏ା𝟏 ଵ

𝒏!

ஶ
𝒏ୀ𝟏

14 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program XII: Verification of Cauchy’s Integral Test.

Maxima code to check the convergence of the series 𝑼𝒏 = ∑
𝟏

𝒏𝟐ା𝟏

ஶ
𝒏ୀ𝟏 by using cauchy’s

integral test .

kill(all)$

print("Cauchy's integral test")$

U(n):=1/(n^2+1)$

ss:sum(U(n),n,1,inf)$

print("U(n)=",ss)$

f(x):=1/(x^2+1)$

d(x):=ratsimp(f(x)-f(x+1))$

print("f(x)-(x+1):",d(x))$

if d(1)>0 then

(

print("The sequence f(x) is monotonically decreasing"),

print("Cauchy's integral test ids applicable"),

s:integrate(f(x),x,1,inf),

ifs#inf then

 (

print("f(x) is convergent"),

print("Hence by Cauchy's integral test U(n) is convergent")

)

else

print("U(n) is divergent")

)

15 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

else

print("Cauchy's integral test cannot br applied")$

Output:

Cauchy's integral test

Un = ෍
1

nଶ + 1

ஶ

୬ୀଵ

f(x) − f(x + 1):
2𝑥 + 1

𝑥ସ + 2𝑥ଷ + 3𝑥ଶ + 2𝑥 + 2

The sequence f(x) is monotonically decreasing

Cauchy's integral test ids applicable

f(x) is convergent

Hence by Cauchy's integral test U(n) is convergent

Examples:

1. ∑ ቂ
௟௢௚௡

୪୭୥ (௡ାଵ)
ቃ

௡మ௟௢௚௡
ஶ
௡ୀଵ

2. ∑ ቀ
௡ାଵ

௡ାଶ
ቁ

௡

𝑥௡ 𝑤ℎ𝑒𝑟𝑒 (𝑥 > 0)ஶ
௡ୀଵ

BLDEA’s s.B. Arts AnD K.C.P. sCiEnCE

CoLLEgE, VijAyAPur
(Affiliated to Rani Channamma University, Belagavi)

Practical’s on DSC 4
PArtiAL DiFFErEntiAL EQuAtions

AnD intEgrAL trAnsForMs
(As PEr nEP-2020)

MAnuAL
B. Sc. IV Semester

Name:………………………………………………………………………………………...

Class:……………………………………………………………………………………………

UUCMS No:…………………………………………………………………………………

DEPARTMENT OF MATHEMATICS

1 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program I : Solution for Linear Partial Differential equation of type I to type IV.

Solve pq=1

/*Type I- PDE Equations of the form f(p,q)=0 */

kill(all)$

print("The given equation is")$

eqn:(p*q=1)$

disp(eqn)$

z:a*x+b*y+c$

print("Substitute p=a and q=b in given equation")$

h:subst([p=a,q=b],eqn)$

print("We get",h)$

disp("solving for a and b")$

solve(h,a);

h1:subst(%,z)$

disp("The required solution is:",h1)$

Output:

The given equation is

pq = 1

Substitute p=a and q=b in given equation

We get ab = 1

solving for a and b

[𝑎 =
ଵ

௕
]

The required solution is :

𝑏𝑦 +
𝑥

𝑏
+ 𝑐

Examples:

1. 122  qp

2. 1 qp

3. qep 

2 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Solve p(1+q)=qz

/*TypeII-PDE Equations of the form f(p,q,z)=0 */

kill(all)$

print("The given equation is")$

eqn:p*(1+q)=q*z$

disp(eqn)$

disp("substitute p=dz/du and q=a.dz/du")$

eqn1:subst([p='diff(z,u),q=a*'diff(z,u)],eqn)$

disp(eqn1)$

disp("solving for dz/du and substitute u=ax+y")$

h1:solve(eqn1,'diff(z,u))$

disp(h1)$

ode2(h1[1],z,u)$

h2:subst(u=x+a*y,%)$

disp("solution is:",h2)$

Output:

The given equation is

𝑝 (𝑞 + 1) = 𝑞𝑧

substitute p=dz/du and q=a.dz/du
ௗ

ௗ௨
𝑧 ቀ𝑎 ቀ

ௗ

ௗ௨
𝑧ቁ + 1ቁ = 𝑎 𝑧 ቀ

ௗ

ௗ௨
𝑧ቁ

Solving for dz/du and substitute 𝑢 = 𝑎𝑥 + 𝑦

[
ௗ

ௗ௭
𝑧 =

௔௭ିଵ

௔
,

ௗ

ௗ௭
𝑧 = 0]

solution is :

z = (
%௘షೌ೤షೣ

௔
+ %𝑐) %𝑒௔௬ା௫

Examples:

1.)1()1(2 zqqp 

2. zpq 

3. pqzqp 333 

3 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Solve p+x=q+y

/*TypeIII-PDE Equations of the form f1(p,x) =f2(q,y) */

kill(all)$

print("The given PDE is")$

eqn:p+x=q+y$

disp(eqn)$

d:(p+q*'diff(y,x))$

r1:lhs(eqn)=k$

disp(r1)$

r2:rhs(eqn)=k$

disp(r2)$

print("solving for p from LHS")$

h1:solve(r1,p)$

disp(h1)$

print("solving for q from RHS")$

h2:solve(r2,q)$

disp(h2)$

print("substituting p and q in dz=pdx+qdy and integrate")$

subst(h1,d)$

A:subst(h2,%)$

ode2((A),y,x)$

z: rhs(%)-lhs(%)$

disp("the solutionis z=",z)$

4 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Output:

The given PDE is

𝑥 + 𝑝 = 𝑦 + 𝑞

𝑥 + 𝑝 = 𝐾

𝑦 + 𝑞 = 𝑘

solving for p from LHS

[𝑝 = 𝐾 − 𝑥]

solving for q fromRHS

[𝑞 = 𝑘 − 𝑦]

substituting p and q in d=pdx+qdy and integrate

the solution is z=

𝑦ଶ − 2𝑘𝑦

2
+

𝑥ଶ − 2𝐾𝑥

2
+ %𝑐

Examples:

1. yqxp  22

2. yxqp 

3. xy qepe 

5 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Solve
qp

pq
qypxz




/*TypeIV-PDE Equations of the form z=px+qy+f(p,q) Clariaut’s equation*/

kill(all)$

print("The given PDE is")$

eqn:z=p*x+q*y+sqrt((p*q)/(p+q))$

disp(eqn)$

disp("substitute p=a & q=b in given equation")$

soln:subst([p=a,q=b],eqn)$

disp("solution is s:", soln)$

Output:

The given PDE is

𝑧 = 𝑞𝑦 + 𝑝𝑥 + ඨ
𝑝𝑞

𝑞 + 𝑝

substitute p=a and q=b in given equation

solution is s:

𝑧 = 𝑏𝑦 + 𝑎𝑥 + ඨ
𝑎𝑏

𝑏 + 𝑎

Examples:

1.)log(pqqypxz 

2.)(pqqypxz 

3. 22 qpqypxz 

6 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program II : Solution of second order homogenous partial differential equation with

constant coefficient.

Solve 0)(23 2||2  DDDD

/* second order linear PDE with constant co−efficients */

kill(all)$

F(D,D1)*z=0$

disp("The given PDE is")$

F(D,D1):=D^2+3*D*(D1)+2*(D1)^2=0$

disp(F(D,D1))$

print("substitute D=m & D1=1")$

ae:F(m,1)$

print("Auxilary equation is",ae)$

k:allroots(ae)$

print("roots are",k)$

k1:rhs(k[1])$

k2:rhs(k[2])$

a1:f(y+k1*x)+g(y+k2*x)$

a2:f(y+k1*x)+x*g(y+k2*x)$

if k1#k2 then

disp("solution is",z=a1)

elsedisp("solution is ",z=a2)$

Output:

The given PDE is:

2𝐷1ଶ + 3𝐷𝐷1 + 𝐷ଶ = 0

7 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

substitute D=m & D1=1

auxilary equation is 𝑚ଶ + 3𝑚 + 2 = 0

roots are [m = -1.0 , m = -2.0]

solution is

𝑧 = 𝑓(𝑦 − 1.0𝑥) + 𝑔(𝑦 − 2.0𝑥)

Examples:

1. 𝐷ଶ − 𝐷𝐷ᇱ − 6𝐷ᇱଶ
= 0

2. 𝐷ଶ + 6𝐷ଶ𝐷ᇱ + 9𝐷ᇱଶ
= 0

Solve)2(2||2)(2 yxeDDDD 

kill(all)$

ratprint:false$

F(D,D1)*z=f(x,y)$

disp("The given PDE is")$

F(D,D1):=D^2−D*D1−2*D1^2$

disp(F(D,D1))$

print("substitute D=m & D1=1")$

ae:F(m,1)$

print("Auxilary equation is",ae)$

h:allroots(ae=0)$

print("roots are",h)$

h1:rhs(h[1])$

h2:rhs(h[2])$

cf1:f1(y+h1*x)+g1(y+h2*x)$

cf2:f1(y+h1*x)+x*g1(y+h2*x)$

if h1#h2 then

(CF:cf1)

8 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

else

(CF:cf2)$

print("Complimentary function is CF=",CF)$

/*For particular integral*/

f(x,y):=%e^(x+2*y)$

print("RHS=",f(x,y))$

I1:integrate(f(x,c−h1*x),x)$

f3(x,y):=ratsimp(subst([c=y+h1*x],I1))$

integrate(f3(x,c−h2*x),x)$

PI:ratsimp(subst([c=y+h2*x],%))$

print("Particular Integral is",PI)$

z:CF+PI$

print("Solution is",z)$

Output:

The given PDE is

−2𝐷1ଶ − 𝐷𝐷1 + 𝐷ଶ = 0

substitute D=m and D1=1

auxiliary equation is 𝑚ଶ − 𝑚 − 2 = 0

roots are [m = -1.0 ,m = 2.0]

complimentary function is CF=g1(y+2.0x)+f1(y-1.0x)

RHS = %𝑒ଶ௬ା௫

Particular integral is -
%௘మ೤శೣ

ଽ

Solution is g1(y+2.0x)+f1(y-1.0x)−
%௘మ೤శೣ

ଽ

Example:

1. 𝐷ଶ − 𝐷𝐷ᇱ + 6𝐷ᇱଶ
= 𝑒(௫ା௬)

2. 𝐷ଶ − 𝐷𝐷ᇱ + 6𝐷ᇱଶ
= 𝑒(௫ି௬)

9 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program III: Laplace Transforms of some common functions:

1. L[a]=
௔

௦
 2. L[𝑒௔௧]=

ଵ

௦ି௔
 3. L[𝑒ି௔௧]=

ଵ

௦ା௔
 4.L[coshat]=

௦

௦మି௔మ
 5. L[sinhat]=

௔

௦మି௔మ

6. L[cosat]=
௦

௦మା௔మ
 7.L[sinat]=

௔

௦మା௔మ
 8.L[tn]=

௡!

௦೙శభ
 ,n∈N 9. L[tn]=

௰(௡ାଵ)

௦೙శభ
 ,n is non integer

10. L[f(n)(t)]= snL[f(t)]-sn-1 f(0)-sn-2 f '(0)- _ _ _ -f(n-1)(0) 11. L[tnf(t)]=(-1)n ௗ೙

ௗ௦೙

 F(s)

Evaluate Laplace transform of atetf )(

/*Laplace Transform of e^(at) */

kill(all)$

disp("The given function is")$

f:%e^(a*t)$

print("f(t)=",f)$

L:laplace(f,t,s)$

disp("Laplace transform of given function is ")$

print("L[f(t)]=",L)$

Output:

The given function is

𝑓(𝑡) = %𝑒௔௧

Laplace transform of given function is

𝐿[𝑓(𝑡)] =
1

𝑠 − 𝑎

Evaluate Laplace transform of attf 2sin)(

10 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

kill(all)$

disp("The given function is")$

f:(sin(a*t))^2$

print("f(t)=",f)$

L:laplace(f,t,s)$

disp("Laplace transform of given function is ")$

print("L[f(t)]=",L)$

Output:

The given function is

𝑓(𝑡) = sin(𝑎𝑡)ଶ

Laplace transform of given function is

𝐿[𝑓(𝑡)] =
2𝑎ଶ

𝑠ଷ + 4𝑎ଶ𝑠

11 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program IV: Laplace Transforms of periodic functions:

Find the laplace transform of f(t)=t2, 0<t<2 & f(t+2)=f(t)

kill(all)$

disp("The given function is")$

f:t^2$

print("f(t)=",f)$

print("Enter the period")$

t1:2$

print("T=",t1)$

a:1/(1−%e^(−t1*s))$

I:integrate(%e^(−s*t)*f,t,0,2)$

L:(a*I)$

print("Laplace transform of given periodic function",L)$

Output:

The given function is

𝑓(𝑡) = 𝑡ଶ

Enter the period

T = 2

Laplace transform of given periodic function
మ

ೞయି
(రೞమశరೞశమ)%೐షమೞ

ೞయ

ଵି%௘షమೞ

Example:

1. f(t) = 𝑒ି௧ , 0<t<1

2. f(t) = 𝑒௧ , 0<t<2

12 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Find Laplace transform of periodic function








426

203
)(

t

tt
tf

kill(all)$

disp("The given function is")$

f1:3*t$

f2:6$

disp(f1,f2)$

print("Enter the period")$

t1:4$

print("T=",t1)$

a:1/(1−%e^(−t1*s))$

I1:integrate(%e^(−s*t)*f1,t,0,2)$

I2:integrate(%e^(−s*t)*f2,t,2,4)$

I:I1+I2$

L:ratsimp(a*I)$

print("Laplace transform of given periodic functionis",L)$

Output:

The given function is

3t

6

Enter the period

Laplace transform of given periodic function is
ଷ%௘రೞିଷ%௘మೞି଺௦

௦మ%௘రೞି௦మ

Example:

1. 𝑓(𝑡) = ൝
𝐸, 0 ≤ 𝑡 ≤

்

ଶ

−𝐸,
்

ଶ
≤ 𝑡 ≤ 𝑇

 with 𝑓(𝑡 + 𝑇) = 𝑓(𝑡)

2. 𝑓(𝑡) = ൝
1, 0 ≤ 𝑡 ≤

௔

ଶ

−1,
௔

ଶ
≤ 𝑡 ≤ 𝑎

 with 𝑓(𝑡 + 𝑎) = 𝑓(𝑡)

13 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program V : Inverse Laplace transform:

1. L-1 [
ଵ

௦
]= 1 2. L-1[

௔

௦
]= a 3. L-1[

ଵ

௦ି௔
] = 𝑒௔௧ 4. L-1[

ଵ

௦ା௔
] = 𝑒ି௔௧

5. L-1[
ଵ

௦మି௔మ
] =

ଵ

௔
sinhat 6. L-1[

௦

௦మି௔మ
]=coshat 7. L-1[

ଵ

௦మା௔మ
] =

ଵ

௔
 sinat 8. L-1[

௦

௦మା௔మ
] =cosat

9. L-1[
ଵ

௦೙శభ
]=

௧೙

௡!
 ,n=0,1,_ _ _ 10. L-1[

ଵ

௦೙శభ
]=

௧೙

௰(௡ାଵ)
 ,n=0,1,_ _ _ or non integer < 0

Evaluate inverse laplace transform of 








2

11

s
L

/*Inverse Laplace Transform*/

kill(all)$

disp("The given function is")$

f:1/(s−2)$

print("f(s)=",f)$

L:ilt(f,s,t)$

disp("Inverse laplace transform of given function is ")$

print("[f(t)=",L)$

Output:

The given function is

𝑓(𝑠) =
1

𝑠 − 2

 Inverse laplace transform of given function is

[𝑓(𝑡)] = %𝑒ଶ௧

14 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Evaluate inverse laplace transform of 











)2)(1(

11

sss
L

kill(all)$

disp("The given function is")$

f:1/(s*(s−1)*(s−2))$

print("f(s)=",f)$

L:ilt(f,s,t)$

disp("Inverse laplace transform of given function is ")$

print("[f(t)=",L)$

Output:

The given function is

𝑓(𝑠) =
1

(𝑠 − 2)(𝑠 − 1)𝑠

Inverse laplace transform of given function is

[𝑓(𝑡) =]
%𝑒ଶ௧

2
− %𝑒௧ +

1

2

15 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program VI: Verificaton of convolution theorem

Verify convolution theorem for the functions ttgetf t cos)(&)(

/*Convolution theorem*/

kill(all)$

assume(t>0)$

print("Given functions are")$

f(t):=%e^t$

g(t):=cos(t)$

print("f(t)=",f(t))$

print("g(t)=",g(t))$

L1:laplace(f(t),t,s)$

print("L[f(t)]=",L1)$

L2:laplace(g(t),t,s)$

print("L[g(t)]=",L2)$

I1:integrate(f(t-u)*g(u),u,0,t)$

LHS:ratsimp(laplace(I1,t,s))$

print("LHS=",LHS)$

RHS:ratsimp(L1*L2)$

print("RHS=",RHS)$

if LHS=RHS then

print("Convolution theorem satisfied")

else

print("Convolution theorem is not satisfied")$

16 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Output:

Given functions are

𝑓(𝑡) = %𝑒௧

𝑔(𝑡) = cos(𝑡)

𝐿[𝑓(𝑡)] =
1

𝑠 − 1

𝐿[𝑓(𝑡)] =
𝑠

𝑠ଶ + 1

LHS =
௦

௦యି௦మା௦ିଵ

RHS =
௦

௦యି௦మା௦ିଵ

Convolution theorem satisfied

Examples:

1. f(t) = 1 and g(t) = sin(t).

2. f(t) = cos(t) and g(t) = sin(t).

17 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program VII: Solution for linear differential equation using laplace transform.

Solve xey
dx

dy 55  using laplace transform at y(0)=1.

/·Solution for linear ODE using Laplace transform·/

kill(all)$

eq:'diff(y(x),x)+5·y(x)−%e^(−5·x)$

print("The given differential equation is",eq)$

laplace(%,x,s);

linsolve(%,laplace(y(x),x,s));

soln:subst(1,y(0),%)$

L:partfrac(rhs(soln[1]),s)$

print("Laplace transform of given eqaution is L[y(x)]=",L)$

y:ilt(%,s,x)$

print("Required solution is y(x)=",y)$

Output:

The given differential equation is
ௗ

ௗ௫
𝑦(𝑥) + 5 𝑦(𝑥) − %𝑒ିହ௫

slaplace(y(x), x, s)+5 laplace (y(x), x, s)-
ଵ

௦ାହ
 –y(0)

[laplace(𝑦(𝑥) , 𝑥, 𝑠) =
𝑦(0) 𝑠 + 5 𝑦(0) + 1

𝑠ଶ + 10𝑠 + 25
]

laplace transform of given equation is L[y(x)] =
ଵ

௦ାହ
+

ଵ

(௦ାହ)మ

Required solution is y(x) = 𝑥%𝑒ିହ௫ + %𝑒ିହ௫

Examples:

1. 𝑦ᇱ − 5𝑦 = 0 given that 𝑦(0) = 2.

2. 𝑦ᇱ − 5𝑦 = 𝑒ହ௫given that 𝑦(0) = 2.

18 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Solve 2)0(&0)0(09 1
2

2

 yywithy
dx

yd
 using laplace transform at y(0)=1.

kill(all)$

eq:'diff(y(x),x,2)+9·y(x)=0$

print("The given differential equation is",eq)$

laplace(%,x,s);

linsolve(%,laplace(y(x),x,s));

soln:subst(0,y(0),%)$

soln1:subst(2,'at('diff(y(x),x),x=0),%)$

L:partfrac(rhs(soln1[1]),s)$

print("Laplace transform of given eqaution is L[y(x)]=",L)$

y:ilt(%,s,x)$

print("Required solution is y(x)=",y)$

Output:

The given differential equation is
ௗమ

ௗ௫మ
𝑦(𝑥) + 9 𝑦(𝑥) = 0

−
ௗ

ௗ௫
𝑦(𝑥)|௫ୀ଴ + 𝑠ଶlaplace(y(x), x, s)+9 laplace(y(x), x, s)-y(0)=0

[laplace(y(x), x, s)=
೏

೏ೣ
௬(௫)|ೣసబା௬(଴)௦

௦మାଽ
]

laplace transform of given equation is L[y(x)] =
ଶ

௦మାଽ

Required solution is y(x) =
ଶ ୱ୧୬(ଷ௫)

ଷ

Examples:

1. 9𝑦ᇱᇱ − 6𝑦ᇱ + 𝑦 = 0 given𝑦(0) = 3 and 𝑦′(0) = 1

19 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program VIII: Solution for Integral equation using laplace transform.

Find Laplace Transform of 
t

dt
t

btat

0

)cos(cos

kill(all)$

f:(cos(a*t)-cos(b*t))/t$

disp("Given integral equation is")$

f1:'integrate(f,t,0,t)$

print("f(t)=",f1)$

L:laplace(f,t,s)$

Lt:ratsimp((1/s)*L)$

disp("Laplace transform of given function is ")$

print("L[f(t)]=",Lt)$

Output:

Given integral equation is

𝑓(𝑡) = න
𝑐𝑜𝑠𝑎𝑡 − 𝑐𝑜𝑠𝑏𝑡

𝑡

௧

଴

 𝑑𝑡

Laplace transform of given function is

𝐿[𝑓(𝑡)] =
log(𝑠ଶ + 𝑏ଶ) − log(𝑠ଶ + 𝑎ଶ)

2𝑠

Examples:

1. 𝑓(𝑡) = ∫
௖௢௦଺௧ି௖௢௦ସ௧

௧

௧

଴
 𝑑𝑡

2. 𝑓(𝑡) = ∫ 𝑠𝑖𝑛𝑡𝑑𝑡
௧

଴

20 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Program IX : Evaluation of Fourier series for simple functions.

Evaluate fourier series for f(x)= x2 in [-𝝅, 𝝅]

/·Fourier Series ·/

kill(all)$

load(fourie)$

print("The given function is")$

f(x):=x^2$

print("f(x)=",f(x))$

c:totalfourier(f(x),x,%pi)$

print("required fourier series is",c)$

OR

/·Fourier Series ·/

kill(all)$

load(fourie)$

print("The given function is")$

f(x):=x^2$

print("f(x)=",f(x))$

fourier(f(x),x,%pi)$

clist:foursimp(%)$

soln:fourexpand(clist,x,%pi,inf)$

print("Required fourier series is",soln)$

21 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Output:

The given function is

 𝑓(𝑥) = 𝑥ଶ

𝑎଴ =
𝜋ଶ

3

𝑎௡ =
2 ቀ

గమୱ୧୬ (గ௡)

௡
−

ଶ ୱ୧ (గ௡)

௡య
+

ଶ ஠ୡ୭ୱ(గ௡)

௡మ
ቁ

𝜋

 𝑏௡ = 0

𝑎଴ =
𝜋ଶ

3

 𝑎௡ =
4(−1)௡

𝑛ଶ

𝑏௡ = 0

Required fourier series is 4 ቀ∑ ቀ
(ିଵ)೙ ୡ୭ୱ(௡௫)

௡మ
ቁஶ

௡ୀଵ ቁ +
గమ

ଷ

Evaluate fourier series for f(x)= x+x2 in [-𝟏, 𝟏]

kill(all)$

load(fourie)$

print("The given function is")$

f(x):=x+x^2$

print("f(x)=",f(x))$

c:totalfourier(f(x),x,1)$

print("required fourier series is",c)$

OR

22 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

kill(all)$

load(fourie)$

print("The given function is")$

f(x):=x+x^2$

print("f(x)=",f(x))$

fourier(f(x),x,1)$

clist:foursimp(%)$

soln:fourexpand(clist,x,1,inf)$

print("required fourier series is",soln)$

/·to plot the gaph·/

soln2:fourexpand(clist,x,1,100)$

wxplot2d([f(x),soln2], [x,−10,10])$

Output:

The given function is

𝑓(𝑥) = 𝑥ଶ+x

 𝑎଴ =
1

3

 𝑎௡ =
ଶ ୱ୧୬(గ௡)

௡గ
−

ସ ୱ୧୬(గ௡)

గయ௡య
 +

ସ ୡ୭ୱ(గ௡)

గమ௡మ

 𝑏௡ =
2 sin(𝜋𝑛)

𝜋ଶ𝑛ଶ
−

2 cos(𝜋𝑛)

𝜋𝑛

 𝑎଴ =
1

3

 𝑎௡ =
4(−1)௡

𝜋ଶ𝑛ଶ

 𝑏௡ =
2(−1)௡

𝜋𝑛

23 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

Required fourier series is
ଶ ∑ ൬

(షభ)೙ ౩౟౤(೙ೣ)

೙
൰ಮ

೙సభ

గ
+

ସ൬∑ ൬
(షభ)೙ ౙ౥౩(ഏ೙ೣ)

೙మ ൰ಮ
೙సభ ൰

గమ
+

ଵ

ଷ

Program X: Evaluation half range sine and cosine series.

 Evaluate half range fourier sine series for f(x)= x2 in [0, 𝜋]

/·Half range sine series·/

kill(all)$

load(fourie)$

print("The given function is")$

f(x):=x^2$

print("f(x)=",f(x))$

foursin(f(x),x,%pi)$

clist:foursimp(%)$

soln:fourexpand(clist,x,%pi,inf)$

print("The half range sine series is",soln)$

Output:

The given function is

𝑓(𝑥) = 𝑥ଶ

 𝑏௡ =
2 ቀ

గୱ୧୬ (గ௡)

௡మ
−

గమ ୡ୭ୱ(గ௡)

௡
+

ଶ ୡ୭ୱ(గ௡)

௡య
−

ଶ

௡య
ቁ

𝜋

 𝑏௡ = −
2(𝜋ଶ𝑛ଶ(−1)௡ − 2(−1)௡ + 2

𝜋𝑛ଷ

The half range sine series is -
ଶ ∑ ൬

ഏమ೙మ(షభ)೙షమ(షభ)೙ శమ౩౟౤(೙ೣ)

೙
൰ಮ

೙సభ

గ

Examples:

24 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

1. 𝑓(𝑥) = 2𝑥 − 1 in [0, 𝜋]

2. 𝑓(𝑥) = 𝑥 in [0, 𝜋]

Evaluate half range fourier cosine series for f(x)= x2 in [0, 𝝅]

/·Half range cosine series·/

kill(all)$

load(fourie)$

print("The given function is")$

f(x):=x^2$

print("f(x)=",f(x))$

fourcos(f(x),x,%pi)$

clist:foursimp(%)$

soln:fourexpand(clist,x,%pi,inf)$

print("The half range cosine series is",soln)$

Output:

The given function is

𝑓(𝑥) = 𝑥ଶ

 𝑎଴ =
𝜋ଶ

3

 𝑎௡ =
2 ቀ

గమୱ୧୬ (గ௡)

௡
−

ଶ ୱ୧୬(గ௡)

௡య
+

ଶ ஠ୡ୭ୱ(గ௡)

௡మ
ቁ

𝜋

 𝑎଴ =
𝜋ଶ

3

 𝑎௡ =
4(−1)௡

𝑛ଶ

The half range cosine series is is4 ቀ∑ ቀ
(ିଵ)೙ ୡ୭ୱ(௡௫)

௡మ
ቁஶ

௡ୀଵ ቁ +
గమ

ଷ

25 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

 Examples:

1. 𝑓(𝑥) = 2𝑥 − 1 in [0, 𝜋]

2. 𝑓(𝑥) = 𝑥 in [0, 𝜋]

ProgramXI: Evaluation of Fourier cosine transform

Evaluate Fourier cosine transform of f(x)=x in [0,π]

/*Fourier cosine transform*/

kill(all)$

print("The given function is")$

f(x):=x$

print("f(x)=",f(x))$

a:0$

p:%pi$

s:integrate(f(x)*cos((n*x*%pi)/p),x,0,p)$

fs:ratsimp(s)$

print("Fourier Cosine Transform of given function is",fs)$

Output:

The given function is

f(x) = x

Fourier Cosine Transform of given function is
గ௡ ୱ୧୬(గ௡)ାୡ୭ୱ(గ௡)ିଵ

௡మ

Examples:

1. 𝑓(𝑥) = 𝑥ଶ in [0, 𝜋]

2. 𝑓(𝑥) = 𝜋 − 𝑥 in [0, 𝜋]

26 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

ProgramXII: Evaluation of Fourier sine transform

Evaluate Fourier sine transform of f(x)=3x in [0,6]

/*Fourier sine transform*/

kill(all)$

print("The given function is")$

f(x):=3*x$

print("f(x)=",f(x))$

a:0$

p:6$

s:integrate(f(x)*sin((n*x*%pi)/p),x,0,p)$

fs:ratsimp(s)$

print("Fourier Sine Transform of given function is",fs)$

Output:

The given function is

f(x) = 3x

Fourier Sine Transform of given function is
ଵ଴଼ ୱ୧୬(గ௡)ିଵ଴଼గ௡ ୡ୭ (గ௡)

గమ௡మ

Examples:

1. 𝑓(𝑥) = 𝑥ଶ in [0, 4]

2. 𝑓(𝑥) = 𝜋 − 𝑥 in [0, 𝜋]

27 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura.

BLDEA’s s.B. Arts AnD K.C.P. sCiEnCE

CoLLEgE, VijAyAPur
(Affiliated to Rani Channamma University, Belagavi)

Practical’s on DSC 1
rEAL AnALysis ii AnD ComPLEx

AnALysis
(As PEr nEP-2020)

mAnuAL
B. Sc. V Semester

Name:………………………………………………………………………………………...

Class:……………………………………………………………………………………………

UUCMS No:…………………………………………………………………………………

DEPARTMENT OF MATHEMATICS

Page 2 of 57

CONTENTS

Sl. No. Title Page No

1 Contents 2
2 List of Experiments 3

3

Experiment1
Program on verification of Cauchy– Riemann Equations(Cartesian Form)
or test for Analyticity.

4

4

Experiment2
Program on verification of Cauchy– Riemann Equations(Polar Form) or
test for Analyticity.

14

5
Experiment3
Program to check whether a function is harmonic or not.

21

6
Experiment4
Program to construct analytic functions (Milne-Thomson Method).

27

7
Experiment5
Program to find cross-ratio of points and related concepts.

35

8
Experiment6
Program to find fixed points of bilinear transformations.

44

9
Experiment7
Program to verify De-Moivre’s theorem.

50

10

Experiment8
Program to check whether a given set of real numbers attains supremum
or infimum.

11

Experiment9
Program to find upper and the lower Riemann sums with respect to a
given partition.

56

12
Experiment10
Program to test Riemann integrability.

57

13
Experiment11
Program to evaluate Riemann integral as a limit of sum.

59

14
Experiment 12
Program to evaluate Γ(𝑛) for 𝑛 is integer and non-integer. 60

15
Experiment 13
Program to evaluateΒ(𝑚, 𝑛) for 𝑚 > 0 and 𝑛 > 0. 61

Page 3 of 57

For Fifth Semester DSC Mathematics
(Practical on Real Analysis-II and Complex Analysis)

(4 Hours per Week and 56 hours per Semester)

Elements of Partial differential equations and Integral transforms using FOSS.

1. Program on verification of Cauchy – Riemann Equations (Cartesian Form) or

test for Analyticity.

2. Program on verification of Cauchy – Riemann Equations (Polar Form) or test

for Analyticity.

3. Program to check whether a function is harmonic or not.

4. Program to construct analytic functions (Milne-Thomson Method).

5. Program to find cross-ratio of points and related concepts.

6. Program to find fixed points of bilinear transformations.

7. Program to verify De-Moivre’s theorem.

8. Program to check whether a given set of real numbers attains supremum or

infimum.

9. Program to find upper and the lower Riemann sums with respect to a given

partition.

10. Program to test Riemann integrability.

11. Program to evaluate Riemann integral as a limit of sum.

Page 4 of 57

Experiment 1

Program on verification of
Cauchy – Riemann Equations (Cartesian Form) or test for Analyticity.

Aim: To verify of Cauchy – Riemann Equations (Cartesian Form) or to test Analyticity of

given function using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

%i

Complex imaginary unit √−1
realpart (expr) Returns the real part of expr.
imagpart (expr) Returns the imaginary part of the expression expr.

abs (z)

The abs function represents the mathematical absolute
value function and works for both numerical and
symbolic values.

cabs (expr)
Calculates the absolute value of an expression
representing a complex number.

conjugate (z) Returns the complex conjugate of z.
atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi.

diff (expr, x)
Returns the first partial derivative of expr with respect to
the variable x.

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and
radicals.

And The logical conjunction operator.

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise
the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

exp (x) or %e^x Represents the exponential function
log (x) Represents the natural (base e) logarithm of x.
sin (x) Trigonometric function sine of x
sinh (x) Hyperbolic function Hyperbolic Sine of x
%pi; 𝜋, an irrational number

Note:1. Press Shift+Enter for evaluation of commands and display of output.

2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

3. Replace dollar ($) by semicolon (;) to see output of any input line.

4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

of all symbols

Page 5 of 57

Definitions and Formulae:

Analytic function: A function (𝑧) of a complex variable 𝑧 = 𝑥 + 𝑖𝑦 is said to be analytic at a point

𝑧0 if it is differentiable at 𝑧0 and at each point of some neighborhood of 𝑧0. (𝑧) is analytic in

a region ‘R’ if it is analytic at all points of ‘R’. An analytic function is also called a

holomorphic function or a regular function. A function which is analytic on the whole

complex plane (i.e., for all 𝑧 ∈ 𝐶) is called an entire function.

Cauchy – Riemann (C-R) Equations in cartesian form: C-R equations give the necessary condition

for a function (𝑧) to be analytic at a point 𝑧0. In cartesian form, if (𝑧) = 𝑢 + 𝑖𝑣 (where,

𝑢 = (𝑥, 𝑦) and 𝑣 = 𝑣(𝑥, 𝑦) are real valued functions of real variables 𝑥 and 𝑦 and 𝑧 = 𝑥 +

𝑖𝑦) is analytic at 𝑧0 then

𝑢𝑥 = 𝑣𝑦 𝑎𝑛𝑑 𝑢𝑦 = −𝑣𝑥

hold at 𝑧0. These are called C-R equations. If C-R equations are not satisfied by (𝑧) at a

point, then it can’t be analytic at that point.

Further, if 𝑢𝑥, 𝑢𝑦, 𝑣𝑥 𝑎𝑛𝑑 𝑣𝑦 are continuous and satisfy C-R equations at a point then the

function is analytic at that point.

Program:

Program to verify Cauchy – Riemann Equations in cartesian form

z:x+%i*y$
f(z):=given function of z$
u:realpart(f(z))$
v:imagpart(f(z))$
u_x:diff(u,x)$
u_y:diff(u,y)$
v_x:diff(v,x)$
v_y:diff(v,y)$
print("f(z)=",f(z))$
print("u=",u)$
print("v=",v)$
print("u_x=",u_x)$
print("v_y=",v_y)$
print("u_y=",u_y)$
print("-v_x=",-v_x)$
if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then
print("C-R Equations are satisfied by f(z) and hence f(z) is analytic")
else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

Page 6 of 57

Worked Examples:

Problem 1. Write a program to test whether (𝑧) = 𝑧 + 𝑒𝑧 is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦

Program:

Output:

z:x+%i*y$

f(z):=z+exp(z)$

u:realpart(f(z))$

v:imagpart(f(z))$

u_x:diff(u,x)$

u_y:diff(u,y)$

v_x:diff(v,x)$

v_y:diff(v,y)$

print("f(z)=",f(z))$

print("u=",u)$

print("v=",v)$

print("u_x=",u_x)$

print("v_y=",v_y)$

print("u_y=",u_y)$

print("-v_x=",-v_x)$

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

𝑓(𝑧) = %𝑒%𝑖𝑦+𝑥 + %𝑖𝑦 + 𝑥

𝑢 = %𝑒𝑥 cos(𝑦) + 𝑥

𝑣 = %𝑒𝑥 sin(𝑦) + 𝑦

𝑢_𝑥 = %𝑒𝑥 cos(𝑦) + 1

𝑣_𝑦 = %𝑒𝑥 cos(𝑦) + 1

𝑢_𝑦 = −%𝑒𝑥 sin(𝑦)

−𝑣_𝑥 = −%𝑒𝑥 sin(𝑦)

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 7 of 57

Problem 2. Write a program to test whether (𝑧) = 𝑠𝑖𝑛 𝑧 is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦

Program:

Output:

z:x+%i*y$

f(z):=sin(z)$

u:realpart(f(z))$

v:imagpart(f(z))$

u_x:diff(u,x)$

u_y:diff(u,y)$

v_x:diff(v,x)$

v_y:diff(v,y)$

print("f(z)=",f(z))$

print("u=",u)$

print("v=",v)$

print("u_x=",u_x)$

print("v_y=",v_y)$

print("u_y=",u_y)$

print("-v_x=",-v_x)$

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then

print("C-R Equations are satisfied by f(z) and hence is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

(𝑧) = sin(%𝑖𝑦 + 𝑥)

𝑢 = sin(𝑥) cosh(𝑦)

𝑣 = cos(𝑥) sinh(𝑦)

𝑢_𝑥 = cos(𝑥) cosh(𝑦)

𝑣_𝑦 = cos(𝑥) cosh(𝑦)

𝑢_𝑦 = sin(𝑥) sinh(𝑦)

−𝑣_𝑥 = sin(𝑥) sinh(𝑦)

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 8 of 57

Problem 3. Write a program to test whether (𝑧) = 𝑙𝑜𝑔 𝑧 is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦

Program:

Output:

z:x+%i*y$

f(z):=log(z)$

u:realpart(f(z))$

v:imagpart(f(z))$

u_x:diff(u,x)$

u_y:diff(u,y)$

v_x:diff(v,x)$

v_y:diff(v,y)$

print("f(z)=",f(z))$

print("u=",u)$

print("v=",v)$

print("u_x=",u_x)$

print("v_y=",v_y)$

print("u_y=",u_y)$

print("-v_x=",-v_x)$

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then

print("C-R Equations are satisfied by f(z) and hence is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

(𝑧) = log(%𝑖𝑦 + 𝑥)

log(𝑦2 + 𝑥2)
𝑢 =

2

𝑣 = atan2(𝑦, 𝑥)

𝑥
𝑢_𝑥 =

𝑦2 + 𝑥2

𝑥
𝑣_𝑦 =

𝑦2 + 𝑥2

𝑦
𝑢_𝑦 =

𝑦2 + 𝑥2

𝑦
−𝑣_𝑥 =

𝑦2 + 𝑥2

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 9 of 57

Problem 4. Write a program to test whether (𝑧) = 𝑧𝑒𝑧 is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦

Program:

Output:

z:x+%i*y$

f(z):=z*exp(z)$

u:realpart(f(z))$

v:imagpart(f(z))$

u_x:diff(u,x)$

u_y:diff(u,y)$

v_x:diff(v,x)$

v_y:diff(v,y)$

print("f(z)=",f(z))$

print("u=",u)$

print("v=",v)$

print("u_x=",u_x)$

print("v_y=",v_y)$

print("u_y=",u_y)$

print("-v_x=",-v_x)$

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then

print("C-R Equations are satisfied by f(z) and hence is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

𝑓(𝑧) = (%𝑖𝑦 + 𝑥)%𝑒%𝑖𝑦+𝑥

𝑢 = 𝑥%𝑒𝑥 cos(𝑦) − %𝑒𝑥𝑦 sin(𝑦)

𝑣 = 𝑥%𝑒𝑥 sin(𝑦) + %𝑒𝑥𝑦 cos(𝑦)

𝑢_𝑥 = −%𝑒𝑥𝑦 sin(𝑦) + 𝑥%𝑒𝑥 cos(𝑦) + %𝑒𝑥 cos(𝑦)

𝑣_𝑦 = −%𝑒𝑥𝑦 sin(𝑦) + 𝑥%𝑒𝑥 cos(𝑦) + %𝑒𝑥 cos(𝑦)

𝑢_𝑦 = −𝑥%𝑒𝑥 sin(𝑦) − %𝑒𝑥 sin(𝑦) − %𝑒𝑥𝑦 cos(𝑦)

−𝑣_𝑥 = −𝑥%𝑒𝑥 sin(𝑦) − %𝑒𝑥 sin(𝑦) − %𝑒𝑥𝑦 cos(𝑦)

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 10 of 57

Problem 5. Write a program to test whether (𝑧) = z ̅is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦 and z̅ is the conjugate

of 𝑧

Program:

Output:

z:x+%i*y$

f(z):=conjugate(z)$

u:realpart(f(z))$

v:imagpart(f(z))$

u_x:diff(u,x)$

u_y:diff(u,y)$

v_x:diff(v,x)$

v_y:diff(v,y)$

print("f(z)=",f(z))$

print("u=",u)$

print("v=",v)$

print("u_x=",u_x)$

print("v_y=",v_y)$

print("u_y=",u_y)$

print("-v_x=",-v_x)$

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then

print("C-R Equations are satisfied by f(z) and hence is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

𝑓(𝑧) = 𝑥 − %𝑖𝑦

𝑢 = 𝑥

𝑣 = −𝑦

𝑢_𝑥 = 1

𝑣_𝑦 = −1

𝑢_𝑦 = 0

−𝑣_𝑥 = 0

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 11 of 57

Problem 6. Write a program to test whether (𝑧) = 𝑧 ∙ 𝐼𝑚(𝑧) is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦

and 𝐼𝑚(𝑧) = Imaginary part of 𝑧

Program:

Output:

z:x+%i*y$

f(z):=z*imagpart(z)$

u:realpart(f(z))$

v:imagpart(f(z))$

u_x:diff(u,x)$

u_y:diff(u,y)$

v_x:diff(v,x)$

v_y:diff(v,y)$

print("f(z)=",f(z))$

print("u=",u)$

print("v=",v)$

print("u_x=",u_x)$

print("v_y=",v_y)$

print("u_y=",u_y)$

print("-v_x=",-v_x)$

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then

print("C-R Equations are satisfied by f(z) and hence is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

𝑓(𝑧) = 𝑦(%𝑖𝑦 + 𝑥)

𝑢 = 𝑥𝑦

𝑣 = 𝑦2

𝑢_𝑥 = 𝑦

𝑣_𝑦 = 2𝑦

𝑢_𝑦 = 𝑥

−𝑣_𝑥 = 0

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 12 of 57

Problem 7. Write a program to test whether (𝑧) = 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) + %𝑖 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) is analytic or not,

where 𝑧 = 𝑥 + 𝑖𝑦

Program:

Output:

f(x,y):=cos(x)*sin(y)+%i*sin(x)*cos(y)$

u:realpart(f(x,y))$

v:imagpart(f(x,y))$

u_x:diff(u,x)$

u_y:diff(u,y)$

v_x:diff(v,x)$

v_y:diff(v,y)$

print("f(z)=",f(x,y))$

print("u=",u)$

print("v=",v)$

print("u_x=",u_x)$

print("v_y=",v_y)$

print("u_y=",u_y)$

print("-v_x=",-v_x)$

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then

print("C-R Equations are satisfied by f(z) and hence is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

(𝑧) = cos(𝑥) sin(𝑦) + %𝑖 sin(𝑥) cos(𝑦)

𝑢 = cos(𝑥) sin(𝑦)

𝑣 = sin(𝑥) cos(𝑦)

𝑢_𝑥 = − sin(𝑥) sin(𝑦)

𝑣_𝑦 = − sin(𝑥) sin(𝑦)

𝑢_𝑦 = cos(𝑥) cos(𝑦)

−𝑣_𝑥 = − cos(𝑥) cos(𝑦)

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 13 of 57

Exercise:

Write a program to test whether the given function (𝑧) is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦:

1. (𝑧) = 𝑐𝑜𝑠(𝑧) (Answer: Analytic)

2. (𝑧) = 𝑐𝑜𝑠ℎ(𝑧) (Answer: Analytic)

3. (𝑧) = 𝑠𝑖𝑛ℎ(𝑧) (Answer: Analytic)

4. 𝑓(𝑧) = 𝑧2 (Answer: Analytic)

5. 𝑓(𝑧) = 𝑧𝑧 (Answer: Analytic)

6. 𝑓(𝑧) = 𝑧𝑧̅ (Answer: Not Analytic)

7. (𝑧) =
1

𝑧

8. (𝑧) =
1

𝑧 ̅

(Answer: Analytic)

(Answer: Not Analytic)

9. 𝑓(𝑧) = 𝑧3 (Answer: Analytic)

10. 𝑓(𝑧) = 𝑅𝑒(𝑧) where Re(z)= real part of z (Answer: Not Analytic)

11. (𝑧) = 3𝑥 − 4𝑦 + 𝑖(4𝑥 + 3𝑦) (Answer: Analytic)

12. (𝑧) = 𝑖𝑧 + 4 (Answer: Analytic)

13. (𝑧) = |𝑧| where |𝑧| = modulus of z (Answer: Not Analytic)

[Hint: Define 𝑓(𝑧) = |𝑧| as f(z):=cabs(z) in Maxima]

Page 14 of 57

Experiment 2

Program on verification of
Cauchy – Riemann Equations (Polar Form) or test for Analyticity.

Aim: To verify Cauchy – Riemann Equations (Polar Form) or to test Analyticity of a given

function using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

%i

Complex imaginary unit √−1
assume(r>0) To declare that r is positive
realpart (expr) Returns the real part of expr.
imagpart (expr) Returns the imaginary part of the expression expr.
conjugate (z) Returns the complex conjugate of z.

abs (z)

The abs function represents the mathematical absolute
value function and works for both numerical and
symbolic values.

cabs (expr)
Calculates the absolute value of an expression
representing a complex number.

atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi.

diff (expr, x)
Returns the first partial derivative of expr with respect to
the variable x.

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and
radicals.

and The logical conjunction operator.

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise
the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

exp (x) or %e^x Represents the exponential function
log (x) Represents the natural (base e) logarithm of x.
sin (x) Trigonometric function sine of x
sinh (x) Hyperbolic function Hyperbolic Sine of x
%pi; 𝜋, an irrational number

Note:1. Press Shift+Enter for evaluation of commands and display of output.

2. Replace semicolon (;) by dollar ($) to suppress output of any input line.
3. Replace dollar ($) by semicolon (;) to see output of any input line.
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

of all symbols

Page 15 of 57

Definitions and Formulae:

Analytic function: A function (𝑧) of a complex variable 𝑧 = 𝑟𝑒𝑖𝜃 = 𝑟(𝑐𝑜𝑠(𝜃) + 𝑖𝑠𝑖𝑛(𝜃)) is said to be

analytic at a point 𝑧0 if it is differentiable at 𝑧0 and at each point of some neighborhood of

𝑧0. (𝑧) is analytic in a region ‘R’ if it is analytic at all points of ‘R’. An analytic function is

also called a holomorphic function or a regular function. A function which is analytic on the

whole complex plane (i.e., for all 𝑧 ∈ 𝐶) is called an entire function.

Cauchy – Riemann (C-R) Equations in polar form: C-R equations give the necessary condition for a

function (𝑧) to be analytic at a point 𝑧0. In polar form, if (𝑧) = 𝑢 + 𝑖𝑣 (where 𝑢 = 𝑢(𝑟, 𝜃)

and 𝑣 = 𝑣(𝑟, 𝜃) are real valued functions of real variables 𝑟 and 𝜃 and 𝑧 = 𝑟𝑒𝑖𝜃) is analytic

at 𝑧0 then

𝑟 ∙ 𝑢𝑟 = 𝑣𝜃 𝑎𝑛𝑑 𝑟 ∙ 𝑣𝑟 = −𝑢𝜃

hold at 𝑧0. These are called C-R equations. If C-R equations are not satisfied by (𝑧) at a

point, then it can’t be analytic at that point.

Further, if 𝑢𝑟, 𝑢𝜃, 𝑣𝑟 𝑎𝑛𝑑 𝑣𝜃 are continuous and satisfy C-R equations at a point then the

function is analytic at that point.

Program:

Program to verify Cauchy – Riemann Equations in polar form

assume(r>0)$
z:r*exp(%i*θ)$
f(z):=given function of z$
u:realpart(f(z))$
v:imagpart(f(z))$
u_r:diff(u,r)$
u_θ:diff(u,θ)$
v_r:diff(v,r)$
v_θ:diff(v,θ)$
print("f(z)=",f(z))$
print("u=",radcan(u))$
print("v=",radcan(v))$
print("ru_r=",radcan(r*u_r))$
print("v_θ=",radcan(v_θ))$
print("rv_r=",radcan(r*v_r))$
print("-u_θ=",radcan(-u_θ))$
if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then
print("C-R Equations are satisfied by f(z) and hence f(z) is analytic")
else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

Page 16 of 57

Worked Examples:

Problem 1. Write a program to test whether (𝑧) = 𝑧𝑛 is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃

Program:

Output:

assume(r>0)$

z:r*exp(%i*θ)$

f(z):=z^n$

u:realpart(f(z))$

v:imagpart(f(z))$

u_r:diff(u,r)$

u_θ:diff(u,θ)$

v_r:diff(v,r)$

v_θ:diff(v,θ)$

print("f(z)=",f(z))$

print("u=",radcan(u))$

print("v=",radcan(v))$

print("ru_r=",radcan(r*u_r))$

print("v_θ=",radcan(v_θ))$

print("rv_r=",radcan(r*v_r))$

print("-u_θ=",radcan(-u_θ))$

if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

𝑓(𝑧) = 𝑟𝑛%𝑒%𝑖𝑛𝜃

𝑢 = 𝑟𝑛 cos(𝑛𝜃)

𝑣 = 𝑟𝑛 sin(𝑛𝜃)

𝑟𝑢_𝑟 = 𝑛𝑟𝑛 cos(𝑛𝜃)

𝑣_𝜃 = 𝑛𝑟𝑛 cos(𝑛𝜃)

𝑟𝑣_𝑟 = 𝑛𝑟𝑛 sin(𝑛𝜃)

−𝑢_𝜃 = 𝑛𝑟𝑛 sin(𝑛𝜃)

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 17 of 57

Problem 2. Write a program to test whether (𝑧) = 𝑧 +
1

is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃

𝑧

Program:

Output:

assume(r>0)$

z:r*exp(%i*θ)$

f(z):=z+1/z$

u:radcan(realpart(f(z)))$

v:radcan(imagpart(f(z)))$

u_r:diff(u,r)$

u_θ:diff(u,θ)$

v_r:diff(v,r)$

v_θ:diff(v,θ)$

print("f(z)=",f(z))$

print("u=",u)$

print("v=",v)$

print("ru_r=",radcan(r*u_r))$

print("v_θ=",radcan(v_θ))$

print("rv_r=",radcan(r*v_r))$

print("-u_θ=",radcan(-u_θ))$

if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

𝑓(𝑧) = 𝑟%𝑒%𝑖𝜃 +
%𝑒−%𝑖𝜃

𝑟

𝑢 =

𝑣 =

(𝑟2 + 1) cos(𝜃)

𝑟
(𝑟2 − 1) sin(𝜃)

𝑟
(𝑟2 − 1) cos(𝜃)

𝑟𝑢_𝑟 =
𝑟

𝑣_𝜃 =
(𝑟2 − 1) cos(𝜃)

𝑟
(𝑟2 + 1) sin(𝜃)

𝑟𝑣_𝑟 =

−𝑢_𝜃 =

𝑟
(𝑟2 + 1) sin(𝜃)

𝑟
𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 18 of 57

Problem 3. Write a program to test whether (𝑧) =
1

is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃

𝑧

Program:

Output:

assume(r>0)$

z:r*exp(%i*θ)$

f(z):=1/z$

u:realpart(f(z))$

v:imagpart(f(z))$

u_r:diff(u,r)$

u_θ:diff(u,θ)$

v_r:diff(v,r)$

v_θ:diff(v,θ)$

print("f(z)=",f(z))$

print("u=",u)$

print("v=",v)$

print("ru_r=",radcan(r*u_r))$

print("v_θ=",radcan(v_θ))$

print("rv_r=",radcan(r*v_r))$

print("-u_θ=",radcan(-u_θ))$

if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

%𝑒−%𝑖𝜃

𝑓(𝑧) =
𝑟

cos(𝜃)
𝑢 =

𝑟
sin(𝜃)

𝑣 = −
𝑟

cos(𝜃)
𝑟𝑢_𝑟 = −

𝑟

𝑣_𝜃 = −
cos(𝜃)

𝑟

𝑟𝑣_𝑟 =
sin(𝜃)

𝑟
sin(𝜃)

−𝑢_𝜃 =
𝑟

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 19 of 57

𝜃

Problem 4. Write a program to test whether (𝑧) = √𝑟𝑒
𝑖(

2
) is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃

Program:

Output:

assume(r>0)$

f(r,θ):=r^(1/2)*exp(%i*θ/2)$

u:realpart(f(r,θ))$

v:imagpart(f(r,θ))$

u_r:diff(u,r)$

u_θ:diff(u,θ)$

v_r:diff(v,r)$

v_θ:diff(v,θ)$

print("f(z)=",f(r,θ))$

print("u=",u)$

print("v=",v)$

print("ru_r=",radcan(r*u_r))$

print("v_θ=",radcan(v_θ))$

print("rv_r=",radcan(r*v_r))$

print("-u_θ=",radcan(-u_θ))$

if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic")

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$

%𝑖𝜃

(𝑧) = √𝑟%𝑒 2

𝜃

𝑢 = √𝑟 cos ()
2

𝜃
𝑣 = √𝑟 sin ()

2
𝜃

 √𝑟 cos ()

𝑟𝑢_𝑟 = 2
2

𝜃

𝑣_𝜃 =
√𝑟 cos (2)

2
𝜃

𝑟𝑣_𝑟 =
√𝑟 sin (2)

2 𝜃

−𝑢_𝜃 =
√𝑟 sin (2)

2
𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

Page 20 of 57

Exercise:

Write a program to test whether the given function (𝑧) is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃:

1. 𝑓(𝑧) = 𝑧2 (Answer: Analytic)

2. 𝑓(𝑧) = 𝑧3 (Answer: Analytic)

3. (𝑧) = 𝑠𝑖𝑛ℎ(𝑧) (Answer: Analytic)

4. 𝑓(𝑧) = 𝑧2 (Answer: Analytic)

5. (𝑧) = 𝑟2(𝑐𝑜𝑠(2𝜃) + 𝑖 𝑠𝑖𝑛(2𝜃)) (Answer: Analytic)

Page 21 of 57

Experiment 3

Program to check whether a function is harmonic or not.

Aim: To check whether a given function is harmonic or not using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

%i

Complex imaginary unit √−1
assume(r>0) To declare that r is positive
realpart (expr) Returns the real part of expr.
imagpart (expr) Returns the imaginary part of the expression expr.
conjugate (z) Returns the complex conjugate of z.

abs (z)

The abs function represents the mathematical absolute
value function and works for both numerical and
symbolic values.

cabs (expr)
Calculates the absolute value of an expression
representing a complex number.

atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi.

diff (expr, x)
Returns the first partial derivative of expr with respect to
the variable x.

diff (expr, x, n)
Returns the nth partial derivative of expr with respect to
the variable x.

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and
radicals.

and The logical conjunction operator.

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise
the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

exp (x) or %e^x Represents the exponential function
log (x) Represents the natural (base e) logarithm of x.
sin (x) Trigonometric function sine of x
sinh (x) Hyperbolic function Hyperbolic Sine of x
%pi; 𝜋, an irrational number

Note:1. Press Shift+Enter for evaluation of commands and display of output.

2. Replace semicolon (;) by dollar ($) to suppress output of any input line.
3. Replace dollar ($) by semicolon (;) to see output of any input line.
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

of all symbols

Page 22 of 57

Definitions and Formulae:

Harmonic function: A function 𝜙 is said to be harmonic if it satisfies Laplace’s Equation ❑2𝜙 = 0.

If 𝜙 is a function of 𝑥 and 𝑦 (Cartesian form) then 𝜙 is harmonic if 𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 0. i.e.,

𝜕2𝜙 𝜕2𝜙

𝜕2𝑥2 +
𝜕2𝑦2 = 0.

If 𝜙 is a function of 𝑟 and 𝜃 then 𝜙 is harmonic if 1 1 𝜙 = 0. i.e.,
𝜙𝑟𝑟 +

𝑟
𝜙𝑟 +

𝑟2

𝜕2𝜙 1 𝜕𝜙 1 𝜕2𝜙

𝜃𝜃

𝜕2𝑟2
+

𝑟 𝜕𝑟
+

𝑟2 𝜕2𝜃2
= 0.

Harmonic property of analytic function: The real and imaginary parts of an analytic function are

harmonic.

Harmonic Conjugates: Two harmonic functions 𝑢 and 𝑣 are said to be harmonic conjugates if 𝑢 + 𝑖𝑣

is analytic. Here 𝑣 is called the harmonic conjugate of 𝑢 and vice-versa.

Program:

Program to check whether a function in 𝑥 and 𝑦 (Cartesian Function) is harmonic or not.

u:given function of 𝑥 and 𝑦$
u_xx:diff(u,x,2)$
u_yy:diff(u,y,2)$
print("u=",u)$
print("u_xx=",radcan(u_xx))$
print("u_yy=",radcan(u_yy))$
print("u_xx+u_yy=",radcan(u_xx+u_yy))$
if radcan(u_xx+u_yy)=0 then
print("Given function is harmonic")
else print("Given function is not harmonic")$

Program to check whether a function in 𝑟 and 𝜃 (Polar Function) is harmonic or not.

u:given function of 𝑟 and 𝜃 $
u_r:diff(u,r)$
u_rr:diff(u,r,2)$
u_θθ:diff(u,θ,2)$
print("u=",u)$
print("u_r=",radcan(u_r))$
print("u_rr=",radcan(u_rr))$
print("u_θθ=",radcan(u_θθ))$
print("u_rr+(u_r)/r+(u_θθ)/r^2=",radcan(u_rr+(u_r)/r+(u_θθ)/r^2))$
if radcan(u_rr+(u_r)/r+(u_θθ)/r^2)=0 then
print("Given function is harmonic")
else print("Given function is not harmonic")$

Page 23 of 57

Worked Examples:

Problem 1. Write a program to check whether 𝑢 = 𝑥2 − 𝑦2 is harmonic or not.

Program:

Output:

u:x^2-y^2$

u_xx:diff(u,x,2)$

u_yy:diff(u,y,2)$

print("u =",u)$

print("u_xx =",radcan(u_xx))$

print("u_yy =",radcan(u_yy))$

print("u_xx+u_yy =",radcan(u_xx+u_yy))$

if radcan(u_xx+u_yy) =0 then

print("Given function is harmonic")

else print("Given function is not harmonic")$

𝑢 = 𝑥2 − 𝑦2

𝑢_𝑥𝑥 = 2

𝑢_𝑦𝑦 = −2

𝑢_𝑥𝑥 + 𝑢_𝑦𝑦 =0

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

Problem 2. Write a program to check whether 𝑢 = 𝑥3 − 3𝑥𝑦2 + 3𝑥2 − 3𝑦2 + 1 is harmonic or not.

Program:

u:x^3-3*x*y^2+3*x^2-3*y^2+1$

u_xx:diff(u,x,2)$

u_yy:diff(u,y,2)$

print("u =",u)$

print("u_xx =",radcan(u_xx))$

print("u_yy =",radcan(u_yy))$

print("u_xx+u_yy =",radcan(u_xx+u_yy))$

if radcan(u_xx+u_yy)=0 then

print("Given function is harmonic")

else print("Given function is not harmonic")$

Page 24 of 57

Output:

𝑢 = −3𝑥𝑦2 − 3𝑦2 + 𝑥3 + 3𝑥2 + 1

𝑢_𝑥𝑥 = 6𝑥 + 6

𝑢_𝑦𝑦 = −6𝑥 − 6

𝑢_𝑥𝑥 + 𝑢_𝑦𝑦 = 0

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

Problem 3. Write a program to check whether 𝑢 = log√x + y is harmonic or not.

Program:

Output:

u:log((x+y)^(1/2))$

u_xx:diff(u,x,2)$

u_yy:diff(u,y,2)$

print("u =",u)$

print("u_xx =",radcan(u_xx))$

print("u_yy =",radcan(u_yy))$

print("u_xx+u_yy =",radcan(u_xx+u_yy))$

if radcan(u_xx+u_yy)=0 then

print("Given function is harmonic")

else print("Given function is not harmonic")$

𝑢 =
log(𝑦 + 𝑥)

2
1

𝑢_𝑥𝑥 = −
2𝑦2 + 4𝑥𝑦 + 2𝑥2

𝑢_𝑦𝑦 = −
1

2𝑦2 + 4𝑥𝑦 + 2𝑥2

1
𝑢_𝑥𝑥 + 𝑢_𝑦𝑦 = −

𝑦2 + 2𝑥𝑦 + 𝑥2

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

Problem 4. Write a program to check whether 𝑢 = (𝑟 +

Program:

1
) cos(𝜃) is harmonic or not.

𝑟

u:(r+1/r)*cos(θ)$

u_r:diff(u,r)$

u_rr:diff(u,r,2)$

Page 25 of 57

Output:

u_θθ:diff(u,θ,2)$

print("u =",u)$

print("u_r =",radcan(u_r))$

print("u_rr =",radcan(u_rr))$

print("u_θθ =",radcan(u_θθ))$

print("u_rr+(u_r)/r+(u_θθ)/r^2 =",radcan(u_rr+(u_r)/r+(u_θθ)/r^2))$

if radcan(u_rr+(u_r)/r+(u_θθ)/r^2) =0 then

print("Given function is harmonic")

else print("Given function is not harmonic")$

1
𝑢 = (𝑟 +) 𝑐𝑜𝑠(𝜃)

𝑟

(𝑟2 − 1) cos(𝜃)
𝑢_𝑟 =

𝑢_𝑟𝑟 =

𝑟2

2 cos(𝜃)

𝑟3

(𝑟2 + 1) cos(𝜃)
𝑢_𝜃𝜃 = −

𝑟

𝑢_𝑟𝑟 +
𝑢_𝑟

+
𝑢_𝜃𝜃

=0
𝑟 𝑟2

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

Problem 5. Write a program to check whether 𝑣 = −
sin(𝜃)

is harmonic or not.
𝑟

Program:

v:-sin(θ)/r$

v_r:diff(v,r)$

v_rr:diff(v,r,2)$

v_θθ:diff(v,θ,2)$

print("v =",v)$

print("v_r =",radcan(v_r))$

print("v_rr =",radcan(v_rr))$

print("v_θθ =",radcan(v_θθ))$

print("v_rr+(v_r)/r+(v_θθ)/r^2 =",radcan(v_rr+(v_r)/r+(v_θθ)/r^2))$

if radcan(v_rr+(v_r)/r+(v_θθ)/r^2) =0 then

print("Given function is harmonic")

else print("Given function is not harmonic")$

Page 26 of 57

Output:

𝑣 = −

𝑣_𝑟 =

sin(𝜃)

𝑟

sin(𝜃)

𝑟2

2 sin(𝜃)
𝑣_𝑟𝑟 = −

𝑟3

sin(𝜃)
𝑣_𝜃𝜃 =

𝑟

𝑣_𝑟𝑟 +
𝑣_𝑟

+
𝑣_𝜃𝜃

=0
𝑟 𝑟2

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

Exercise:

Write a program to check whether the given functions are harmonic or not:

1. 𝑢 = 𝑙𝑜𝑔√𝑥2 + 𝑦2 (Answer: Harmonic)

2. 𝑣 = cos(𝑥) sinh(𝑦) (Answer: Harmonic)

3. 𝑢 = 𝑥2 + 4𝑥 − 𝑦2 + 2𝑦 (Answer: Harmonic)

4. 𝑢 = 𝑒(𝑥 𝑐𝑜𝑠(𝑦) − 𝑦 𝑠𝑖𝑛(𝑦)) (Answer: Harmonic)

5. 𝑢 = 3𝑥2 + 2𝑥𝑦 − 2𝑦2 (Answer: Not Harmonic)

6. 𝑣 = −𝑟3 sin(3𝜃) (Answer: Harmonic)

7. 𝑢 = 𝑟2 cos(3𝜃) (Answer: Not Harmonic)

8. 𝑢 =
cos(𝜃)

𝑟
(Answer: Harmonic)

Page 27 of 57

Experiment 4

Program to construct analytic functions (Milne-Thomson Method).

Aim: To construct analytic function from its real/imaginary part by applying Milne-Thomson Method

using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

%i

Complex imaginary unit √−1
assume(r>0) To declare that r is positive
realpart (expr) Returns the real part of expr.
imagpart (expr) Returns the imaginary part of the expression expr.
conjugate (z) Returns the complex conjugate of z.

abs (z)

The abs function represents the mathematical absolute
value function and works for both numerical and
symbolic values.

cabs (expr)
Calculates the absolute value of an expression
representing a complex number.

atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi.

diff (expr, x)
Returns the first partial derivative of expr with respect to
the variable x.

subst (a, b, c) Substitutes a for b in c

subst ([eq_1, ..., eq_k], expr)
For each equation, the right side will be substituted for
the left in the expression expr.

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and
radicals.

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise
the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

exp (x) or %e^x Represents the exponential function
log (x) Represents the natural (base e) logarithm of x.
sin (x) Trigonometric function sine of x
sinh (x) Hyperbolic function Hyperbolic Sine of x
%pi; 𝜋, an irrational number

Note:1. Press Shift+Enter for evaluation of commands and display of output.

2. Replace semicolon (;) by dollar ($) to suppress output of any input line.
3. Replace dollar ($) by semicolon (;) to see output of any input line.
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

of all symbols

Page 28 of 57

Definitions and Formulae:

Milne-Thomson Method of constructing analytic function from its real or imaginary part:

Cartesian function:

Step 1. If the real part u is given then find 𝑓′(𝑧) = 𝑢𝑥 − 𝑖𝑢𝑦. If the imaginary part v is given then find

𝑓′(𝑧) = 𝑣𝑦 + 𝑖𝑣𝑥.

Step 2. Substitute 𝑥 = 𝑧, 𝑦 = 0 in 𝑓′(𝑧) to express it in 𝑧.

Step 3. Integrate 𝑓′(𝑧) with respect to 𝑧 to get 𝑓(𝑧).

Polar function:

Step 1. If the real part u is given then find 𝑓′(𝑧) = 𝑒−𝑖𝜃 (𝑢𝑟

then find 𝑓′(𝑧) = 𝑒−𝑖𝜃 (
𝑣𝜃 + 𝑖𝑣).
𝑟 𝑟

Step 2. Substitute 𝑟 = 𝑧, 𝜃 = 0 in 𝑓′(𝑧) to express it in 𝑧.

Step 3. Integrate 𝑓′(𝑧) with respect to 𝑧 to get 𝑓(𝑧).

— 𝑖
𝑢𝜃). If the imaginary part v is given
𝑟

Program:

Program to construct analytic function when real part is given in 𝑥 and 𝑦 (Cartesian Function).

u:given function of 𝑥 and 𝑦$
u_x:diff(u,x)$
u_y:diff(u,y)$
f:radcan(subst([x=z, y=0], u_x-%i*u_y))$
F:radcan(integrate(f,z))$
print("u=",u)$
print("f'(z)=",f)$
print(" Required Analytic function is f(z)=",F)$

Program to construct analytic function when imaginary part is given in 𝑥 and 𝑦 (Cartesian Function).

v:given function of 𝑥 and 𝑦$
v_x:diff(v,x)$
v_y:diff(v,y)$
f:radcan(subst([x=z, y=0], v_y+%i*v_x))$
F:radcan(integrate(f,z))$
print("v=",v)$
print("f'(z)=",f)$
print(" Required Analytic function is f(z)=",F)$

Page 29 of 57

Program to construct analytic function when real part is given in 𝑟 and 𝜃 (Polar Function).

u: given function in r and θ $
u_r:diff(u,r)$
u_θ:diff(u,θ)$
f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(u_r-%i*u_θ/r)))$
F:radcan(integrate(f,z))$
print("u=",u)$
print("f'(z)=",f)$
print(" Required Analytic function is f(z)=",F)$

Program to construct analytic function when imaginary part is given in 𝑟 and 𝜃 (Polar Function).

v:given function in r and θ $
v_r:diff(v,r)$
v_θ:diff(v,θ)$
f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(v_θ/r+%i*v_r)))$
F:radcan(integrate(f,z))$
print("v=",v)$
print("f'(z)=",f)$
print(" Required Analytic function is f(z)=",F)$

Worked Examples:

Problem 1. Write a program to construct an analytic function whose real part is 𝑢 = 𝑙𝑜𝑔 √𝑥2 + 𝑦2.

Program:

Output:

u:1/2*log(x^2+y^2)$

u_x:diff(u,x)$

u_y:diff(u,y)$

f:radcan(subst([x=z, y=0], u_x-%i*u_y))$

F:radcan(integrate(f,z))$

print("u=",u)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

log(𝑦2 + 𝑥2)
𝑢 =

2
1

𝑓′(𝑧) =
𝑧

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = log(𝑧)

Page 30 of 57

Problem 2. Write a program to construct an analytic function whose real part is 𝑢 = 𝑠𝑖(𝑥) 𝑐𝑜𝑠ℎ(𝑦).

Program:

Output:

u:sin(x)*cosh(y)$

u_x:diff(u,x)$

u_y:diff(u,y)$

f:radcan(subst([x=z, y=0], u_x-%i*u_y))$

F:radcan(integrate(f,z))$

print("u=",u)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

𝑢 = sin(𝑥) cosh(𝑦)

𝑓′(𝑧) = cos(𝑧)

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = sin(𝑧)

Problem 3. Write a program to construct an analytic function whose real part is 𝑢 =
sin(2𝑥)

cosh(2𝑦)−cos(2𝑥)

Program:

Output:

u:sin(2*x)/(cosh(2*y)-cos(2*x))$

u_x:diff(u,x)$

u_y:diff(u,y)$

f:trigreduce(trigrat(subst([x=z, y=0], u_x-%i*u_y)))$

F:trigreduce(trigrat(integrate(f,z)))$

print("u=",u)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

sin(2𝑥)
𝑢 =

cosh(2𝑦) − cos(2𝑥)

2
𝑓′(𝑧) =

cos(2𝑧) − 1

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = cot(𝑧)

Page 31 of 57

Problem 4. Construct an analytic function whose imaginary part is 𝑣 = 𝑒(𝑥 𝑠𝑖𝑛(𝑦) + 𝑦 𝑐𝑜𝑠(𝑦))

Program:

Output:

v:exp(x)*(x*sin(y)+y*cos(y))$

v_x:diff(v,x)$

v_y:diff(v,y)$

f:radcan(subst([x=z, y=0], v_y+%i*v_x))$

F:radcan(integrate(f,z))$

print("v=",v)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

𝑣 = 𝑒(𝑥 sin(𝑦) + 𝑦 cos(𝑦))

𝑓′(𝑧) = (𝑧 + 1)%𝑒𝑧

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) = 𝑧%𝑒𝑧

Problem 5. Construct an analytic function whose imaginary part is 𝑣 = −
sinh(2𝑦)

cosh(2𝑦)−cos(2𝑥)

Program:

Output:

v:-sinh(2*y)/(cosh(2*y)-cos(2*x))$

v_x:diff(v,x)$

v_y:diff(v,y)$

f:radcan(subst([x=z, y=0], v_y+%i*v_x))$

F:radcan(integrate(f,z))$

print("v=",v)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

print(" That is, f(z)=",trigreduce(trigrat(F)))$

sinh(2𝑦)

𝑣 = −
cosh(2𝑦) − cos(2𝑥)

2
𝑓′(𝑧) =

cos(2𝑧) − 1

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) =

𝑇ℎ𝑎𝑡 𝑖𝑠, 𝑓(𝑧) = 𝑐𝑜𝑡(𝑧)

cos(2𝑧) + 1

sin(2𝑧)

Page 32 of 57

Problem 6. Write a program to construct an analytic function whose real part is 𝑢 =
cos(𝜃)

𝑟

Program:

Output:

u:cos(θ)/r$

u_r:diff(u,r)$

u_θ:diff(u,θ)$

f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(u_r-%i*u_θ/r)))$

F:radcan(integrate(f,z))$

print("u=",u)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

cos(𝜃)
𝑢 =

𝑟

1
𝑓′(𝑧) = −

𝑧2

1
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) =

𝑧

Problem 7. Write a program to construct an analytic function whose real part is 𝑢 = (𝑟 +

Program:

1
) cos(𝜃)

𝑟

Output:

u:(r+1/r)*cos(θ)$

u_r:diff(u,r)$

u_θ:diff(u,θ)$

f:subst([r=z, θ=0], exp(-%i*θ)*(u_r-%i*u_θ/r))$

F:integrate(f,z)$

print("u=",u)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

1
𝑢 = (𝑟 +) cos(𝜃)

𝑟
1

𝑓′(𝑧) = 1 −
𝑧2

1
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) = 𝑧 +

𝑧

Page 33 of 57

Problem 8. Write a program to construct an analytic function whose imaginary part is 𝑣 = (𝑟 −

Program:

1
) sin(𝜃)

𝑟

Output:

v:(r-1/r)*sin(θ)$

v_r:diff(v,r)$

v_θ:diff(v,θ)$

f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(v_θ/r+%i*v_r)))$

F:integrate(f,z)$

print("v=",v)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

1
𝑣 = (𝑟 −) sin(𝜃)

𝑟
𝑧2 − 1

𝑓′(𝑧) =
𝑧2

1
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) = 𝑧 +

𝑧

Problem 9. Write a program to construct an analytic function whose imaginary part is 𝑣 = 𝑟2 cos(2𝜃)

Program:

Output:

v:r^2*cos(2*θ)$

v_r:diff(v,r)$

v_θ:diff(v,θ)$

f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(v_θ/r+%i*v_r)))$

F:radcan(integrate(f,z))$

print("v=",v)$

print("f'(z)=",f)$

print(" Required Analytic function is f(z)=",F)$

𝑣 = 𝑟2 cos(2𝜃)

𝑓′(𝑧) = 2%𝑖𝑧

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = %𝑖𝑧2

Page 34 of 57

Exercise:

Write a program to construct an analytic function from the given real part (𝑢) or imaginary part (𝑣):

1. 𝑢 = 𝑥2 − 𝑦2 (Answer: (𝑧) = 𝑧2)

2. 𝑢 =
𝑥4−𝑦4−2𝑥

𝑥2+𝑦2

(Answer: (𝑧) =
𝑧3−2

)
𝑧

3. 𝑢 = 𝑒2(𝑥 cos(2𝑦) − 𝑦 sin(2𝑦)) (Answer: 𝑓(𝑧) = 𝑧𝑒2𝑧)

4. 𝑢 = 𝑟2 cos(2𝜃) (Answer: 𝑓(𝑧) = 𝑧2)

5. 𝑣 = cos(𝑥) cosh(𝑦) (Answer: 𝑓(𝑧) = %𝑖 cos(𝑧))

6. 𝑣 =
𝑥−𝑦

𝑦2+𝑥2

7. 𝑣 = −
sin(𝜃)

𝑟

(Answer: (𝑧) =
%𝑖+1

)
𝑧

(Answer: (𝑧) =
1

)
𝑧

8. 𝑣 = √𝑟 𝑠𝑖𝑛 (
𝜃
) (Answer: (𝑧) = √𝑧)

2

Page 35 of 57

Experiment 5

Program to find cross-ratio of points and related concepts.

Aim: To find the cross ratio of given points and bilinear transformation related problems using

Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

%i

Complex imaginary unit √−1
assume(r>0) To declare that r is positive
realpart (expr) Returns the real part of expr.
imagpart (expr) Returns the imaginary part of the expression expr.
conjugate (z) Returns the complex conjugate of z.

abs (z)

The abs function represents the mathematical absolute
value function and works for both numerical and
symbolic values.

cabs (expr)
Calculates the absolute value of an expression
representing a complex number.

atan2 (y, x) yields the value of atan(y/x) in the interval −%𝑝𝑖 to %𝑝𝑖.

rectform (expr)
Returns an expression 𝑎 + 𝑏 %𝑖 equivalent to expr, such
that a and b are purely real

:= The function definition operator.

f(x_1, ..., x_n) := expr
Defines a function named f with arguments x_1, …, x_n
and function body expr

subst ([eq_1, ..., eq_k], expr)
For each equation, the right side will be substituted for
the left in the expression expr.

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and
radicals.

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise
the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

solve (expr, x)
Solves the algebraic equation expr for the variable x and
returns a list of solution equations in x

inf inf represents real positive infinity
%pi; 𝜋, an irrational number

Note:1. Press Shift+Enter for evaluation of commands and display of output.
2. Replace semicolon (;) by dollar ($) to suppress output of any input line.
3. Replace dollar ($) by semicolon (;) to see output of any input line.
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

of all symbols

Page 36 of 57

Definitions and Formulae:

Cross Ratio:

Let 𝑧1, 𝑧2, 𝑧3, 𝑧4 be four distinct points in the extended complex plane ℂ∞ then the following

(𝑧1 − 𝑧2)(𝑧3 − 𝑧4)

(𝑧2 − 𝑧3)(𝑧4 − 𝑧1)

is called the cross ratio of 𝑧1, 𝑧2, 𝑧3, 𝑧4 and is denoted by (𝑧1, 𝑧2, 𝑧3, 𝑧4). By performing permutations

on the four points 𝑧1, 𝑧2, 𝑧3, 𝑧4 we get 4! = 24 cross ratios but only six of them are distinct. Thus,

distinct cross ratios of 𝑧1, 𝑧2, 𝑧3, 𝑧4 are given by:

1) (𝑧1− 𝑧2)(𝑧3− 𝑧4)

(𝑧2− 𝑧3)(𝑧4− 𝑧1)

4) (𝑧1− 𝑧3)(𝑧4− 𝑧2)

(𝑧3− 𝑧4)(𝑧2− 𝑧1)

2) (𝑧1− 𝑧2)(𝑧4− 𝑧3)

(𝑧2− 𝑧4)(𝑧3− 𝑧1)

5) (𝑧1− 𝑧4)(𝑧2− 𝑧3)

(𝑧4− 𝑧2)(𝑧3− 𝑧1)

3) (𝑧1− 𝑧3)(𝑧2− 𝑧4)

(𝑧3− 𝑧2)(𝑧4− 𝑧1)

6) (𝑧1− 𝑧4)(𝑧3− 𝑧2)

(𝑧4− 𝑧3)(𝑧2− 𝑧1)

The values of these distinct cross ratios are related. If the first one is 𝜆 then the others will be:

 , 1 − 𝜆, 1−𝜆, 1 , 1. In this manual we take the first value for cross ratio and define cross ratio
1−𝜆 𝜆 1−𝜆 𝜆

of 𝑧1, 𝑧2, 𝑧3, 𝑧4 as:

(𝑧1 − 𝑧2)(𝑧3 − 𝑧4)

Further note that,

(1, 𝑧2, 𝑧3, 𝑧4) =
(𝑧

2 − 𝑧3)(𝑧4 − 𝑧1)

(𝑧 , 𝑧 , 𝑧 , 𝑧) =
(𝑧1− 𝑧2) if 𝑧 = ∞

1 2 3 4 (𝑧3− 𝑧1) 4

(𝑧 , 𝑧 , 𝑧 , 𝑧) =
(𝑧1− 𝑧2) if 𝑧 = ∞

1 2 3 4 (𝑧1− 𝑧4) 3

(𝑧 , 𝑧 , 𝑧 , 𝑧) =
(𝑧3− 𝑧4) if 𝑧 = ∞

1 2 3 4 (𝑧1− 𝑧4) 2

(𝑧 , 𝑧 , 𝑧 , 𝑧) =
(𝑧3− 𝑧4) if 𝑧 = ∞

1 2 3 4 (𝑧3− 𝑧2) 1

The linear transformation: A transformation of the form 𝑤 = 𝑎𝑧 + 𝑏, is called a linear transformation,

where 𝑎 and 𝑏 are complex constants.

Bilinear transformation: A transformation of the form 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑

is called a Bilinear transformation or

linear fractional transformation, where 𝑎, 𝑏, 𝑐, 𝑑 are complex constants and 𝑎𝑑 − 𝑏𝑐 ≠ 0. This

transformation is linear in both 𝑤 and 𝑧 and hence it is bilinear transformation. It is also called Mobius

transformation. Inverse transformation is 𝑧 =
−𝑑𝑤+𝑏

𝑐𝑤−𝑎

Page 37 of 57

Preservation of cross ratio: Any bilinear transformation preserves cross ratio. i.e., cross ratio is

invariant under a bilinear transformation. This fact can be used to find a bilinear transformation which

maps 𝑧1, 𝑧2, 𝑧3 to 𝑤1, 𝑤2, 𝑤3 respectively by using:

(𝑧 − 𝑧1)(𝑧2 − 𝑧3) (𝑤 − 𝑤1)(𝑤2 − 𝑤3)
 =

i.e.,

(𝑧1− 𝑧 2)(𝑧 3− 𝑧) (𝑤 −1 𝑤)(𝑤2 — 3𝑤)

(𝑤 − 𝑤1)(𝑤2 − 𝑤3)(𝑧1 − 𝑧2)(𝑧3 − 𝑧) = (𝑤1 − 𝑤2)(𝑤3 − 𝑤)(𝑧 − 𝑧1)(𝑧2 − 𝑧3)

Further note that,

(𝑤 − 𝑤1)(𝑤2 − 𝑤3)(𝑧1 − 𝑧2) = −(𝑤1 − 𝑤2)(𝑤3 − 𝑤)(𝑧 − 𝑧1) if 𝑧3 = ∞

(𝑤 − 𝑤1)(𝑤2 − 𝑤3)(𝑧3 − 𝑧) = −(𝑤1 − 𝑤2)(𝑤3 − 𝑤)(𝑧 − 𝑧1) if 𝑧2 = ∞

(𝑤 − 𝑤1)(𝑤2 − 𝑤3)(𝑧3 − 𝑧) = −(𝑤1 − 𝑤2)(𝑤3 − 𝑤)(𝑧2 − 𝑧3) if 𝑧1 = ∞

(𝑤 − 𝑤1)(𝑧1 − 𝑧2)(𝑧3 − 𝑧) = −(𝑤1 − 𝑤2)(𝑧 − 𝑧1)(𝑧2 − 𝑧3) if 𝑤3 = ∞

(𝑤 − 𝑤1)(𝑧1 − 𝑧2)(𝑧3 − 𝑧) = −(𝑤3 − 𝑤)(𝑧 − 𝑧1)(𝑧2 − 𝑧3) if 𝑤2 = ∞

(𝑤2 − 𝑤3)(𝑧1 − 𝑧2)(𝑧3 − 𝑧) = −(𝑤3 − 𝑤)(𝑧 − 𝑧1)(𝑧2 − 𝑧3) if 𝑤1 = ∞

Program:

Program to find the cross ratio of four points (1, 𝑧2, 𝑧3, 𝑧4).

z1:given value of 𝑧1$
z2: given value of 𝑧2$
z3: given value of 𝑧3$
z4: given value of 𝑧4$
CR:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$
print("Cross Ratio (z1, z2, z3, z4) =", CR)$

Program to check invariance of cross ratio of four points (1, 𝑧2, 𝑧3, 𝑧4) in a bilinear transformation.

w(z):= given transformation$
z1:given value of 𝑧1$
z2: given value of 𝑧2$
z3: given value of 𝑧3$
z4: given value of 𝑧4$
CR1:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$
CR2:radcan(((w(z1)-w(z2))*(w(z3)-w(z4)))/((w(z2)-w(z3))*(w(z4)-w(z1))))$
print("Given transformation is w(z) =", w(z))$
print("Cross Ratio (z1, z2, z3, z4) =", rectform(CR1))$
print("Cross Ratio (w1, w2, w3, w4) =", rectform(CR2))$
if rectform(CR1)=rectform(CR2) then
print("Cross ratio is invariant in the given transformation")
else print("Cross ratio is not preserved in the given transformation")$

Page 38 of 57

Program to find bilinear transformation which maps 1, 𝑧2, 𝑧3 to 𝑤1, 𝑤2, 𝑤3 respectively

z1: given value of 𝑧1$
z2: given value of 𝑧2$
z3: given value of 𝑧3$
w1: given value of 𝑤1$
w2: given value of 𝑤2$
w3: given value of 𝑤3$
eq:(w-w1)*(w2-w3)*(z1-z2)*(z3-z)=(w1-w2)*(w3-w)*(z-z1)*(z2-z3)$
print("Required Bilinear Transformation is w(z)=", radcan(rhs(solve(eq,w)[1])))$

Note: When one of the given points is infinity, use correct expressions given in definitions section.

Worked Examples:

Problem 1. Write a program to find the cross ratio of four points 𝑖, 1, 2 − 𝑖, 3.

Program:

Output:

z1:%i$

z2:1$

z3:2-%i$

z4:3$

CR:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$

print("Cross Ratio (z1, z2, z3, z4) =", CR)$

%𝑖 + 1

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑧1, 𝑧2, 𝑧3, 𝑧4) =
%𝑖 − 3

Problem 2. Write a program to find the cross ratio of four points 𝑖, 1, 2, ∞.

Program:

Output:

z1:%i$

z2:1$

z3:2$

z4:inf$

CR:radcan((z1-z2)/(z3-z2))$

print("Cross Ratio (z1, z2, z3, z4) =", CR)$

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = %𝑖 − 1

Page 39 of 57

Problem 3. Write a program to check invariance of cross ratio of four points (𝑖, 1, 2 − 𝑖, 3) in the

transformation 𝑤 =
1+𝑖𝑧

1−𝑖𝑧

Program:

Output:

w(z):=(1+%i*z)/(1-%i*z)$
z1:%i$
z2:1$
z3:2-%i$
z4:3$
CR1:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$
CR2:radcan(((w(z1)-w(z2))*(w(z3)-w(z4)))/((w(z2)-w(z3))*(w(z4)-w(z1))))$
print("Given transformation is w(z) =", w(z))$
print("Cross Ratio (z1, z2, z3, z4) =", rectform(CR1))$
print("Cross Ratio (w1, w2, w3, w4) =", rectform(CR2))$
if rectform(CR1)=rectform(CR2) then
print("Cross ratio is invariant in the given transformation")
else print("Cross ratio is not preserved in the given transformation")$

%𝑖𝑧 + 1

𝐺𝑖𝑣𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) =
1 − %𝑖𝑧

2%𝑖 1

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = −
5

−
5

2%𝑖 1

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑤1, 𝑤2, 𝑤3, 𝑤4) = −
5

−
5

𝐶𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Page 40 of 57

Problem 4. Write a program to check invariance of cross ratio of four points (2, 𝑖, −2, −𝑖) in the

transformation 𝑤 =
5−4𝑧

4𝑧−2

Program:

Output:

w(z):=(5-4*z)/(4*z-2)$
z1:2$
z2:%i$
z3:-2$
z4:-%i$
CR1:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$
CR2:radcan(((w(z1)-w(z2))*(w(z3)-w(z4)))/((w(z2)-w(z3))*(w(z4)-w(z1))))$
print("Given transformation is w(z) =", w(z))$
print("Cross Ratio (z1, z2, z3, z4) =", rectform(CR1))$
print("Cross Ratio (w1, w2, w3, w4) =", rectform(CR2))$
if rectform(CR1)=rectform(CR2) then
print("Cross ratio is invariant in the given transformation")
else print("Cross ratio is not preserved in the given transformation")$

5 − 4𝑧

𝐺𝑖𝑣𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) =
4𝑧 − 2

24%𝑖 7
𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = −

25
−

25

24%𝑖 7

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑤1, 𝑤2, 𝑤3, 𝑤4) = −
25

−
25

𝐶𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Page 41 of 57

Problem 5. Write a program to find the bilinear transformation which maps −𝑖, 0, 𝑖 to

−1, 𝑖, 1 respectively.

Program:

Output:

z1:-%i$

z2:0$

z3:%i$

w1:-1$

w2:%i$

w3:1$

eq:(w-w1)*(w2-w3)*(z1-z2)*(z3-z)=(w1-w2)*(w3-w)*(z-z1)*(z2-z3)$

print("Required Bilinear Transformation is w(z)=",factor(rhs(solve(eq,w)[1])))$

%(𝑧 − 1)

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤 = −
𝑧 + 1

Problem 6. Write a program to find the bilinear transformation which maps 0, 1, ∞ to

−5, − 1, 3 respectively.

Program:

Output:

z1:0$

z2:1$

z3:inf$

w1:-5$

w2:-1$

w3:3$

eq:(w-w1)*(w2-w3)*(z1-z2)=-(w1-w2)*(w3-w)*(z-z1)$

print("Required Bilinear Transformation is w(z)=", radcan(rhs(solve(eq,w)[1])))$

3𝑧 − 5
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤 =

𝑧 + 1

Page 42 of 57

Problem 7. Write a program to find the bilinear transformation which maps 1, 𝑖, − 1 to

0, 1, ∞ respectively.

Program:

Output:

z1:1$

z2:%i$

z3:-1$

w1:0$

w2:1$

w3:inf$

eq:(w-w1)*(z1-z2)*(z3-z)=-(w1-w2)*(z-z1)*(z2-z3)$

print("Required Bilinear Transformation is w(z)=",factor(rhs(solve(eq,w)[1])))$

print("That is, w(z)=",rectform(factor(rhs(solve(eq,w)[1]))))$

(%𝑖 + 1)(𝑧 − 1)

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤 =
(%𝑖 − 1)(𝑧 + 1)

%(𝑧 − 1)
𝑇ℎ𝑎𝑡 𝑖𝑠, 𝑤(𝑧) = −

𝑧 + 1

Problem 8. Write a program to find the bilinear transformation which maps ∞, 𝑖, 0 to

0, 𝑖, ∞ respectively.

Program:

Output:

z1:inf$

z2:%i$

z3:0$

w1:0$

w2:%i$

w3:inf$

eq:(w-w1)*(z3-z)=(w1-w2)*(z2-z3)$

print("Required Bilinear Transformation is w(z)=",radcan(rhs(solve(eq,w)[1])))$

1
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤 = −

𝑧

Page 43 of 57

Exercise:

Write a program to find the cross ratio of four points (1, 𝑧2, 𝑧3, 𝑧4).

1. 𝑧1 = 0, 𝑧2 = 3, 𝑧3 = 4, 𝑧4 = 6 (Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 = −1)

2. 𝑧1 = 1, 𝑧2 = 𝑖, 𝑧3 = 0, 𝑧4
= −𝑖 (Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =

𝑖−1
)

𝑖+1

3. 𝑧1 = 0, 𝑧2 = 𝑖, 𝑧 3 = ∞, 𝑧4 = −1 (Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 = −𝑖)

Write a program to check invariance of cross ratio of four points (1, 𝑧2, 𝑧3, 𝑧4)

in the given transformation 𝑤.

1. 𝑧1 = 5, 𝑧2 = 3, 𝑧3 = −2, 𝑧4
= 4 and 𝑤 =

3𝑧−5

𝑧+1
(Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡)

2. 𝑧1 = 𝑖, 𝑧2 = 3, 𝑧3 = 2, 𝑧4
= 0 and 𝑤 =

𝑧+1

𝑧−1
(Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡)

3. 𝑧1 = 0, 𝑧2 = 1, 𝑧3 = −1, 𝑧4
= 𝑖 and 𝑤 =

1+𝑖−3𝑧

2−𝑖+𝑖𝑧
(Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡)

Write a program to find the bilinear transformation which maps 𝑧1, 𝑧2, 𝑧3 to 𝑤1, 𝑤2, 𝑤3 respectively.

1. 𝑧1 = 1, 𝑧2 = −1, 𝑧3 = ∞ and 𝑤1 = 1 + 𝑖, 𝑤2 = 1 − 𝑖, 𝑤3
= 1 (Answer: 𝑤 =

𝑧+%𝑖
)

𝑧

2. 𝑧1 = −𝑖, 𝑧2 = 0, 𝑧3 = 𝑖 and 𝑤1 = −1, 𝑤2 = 𝑖, 𝑤3
= 1 (Answer: 𝑤 = −

%(𝑧−1)
)

𝑧+1

3. 𝑧1 = −1, 𝑧2 = 0, 𝑧3 = 1 and 𝑤1 = 0, 𝑤2 = 𝑖, 𝑤3
= 3𝑖 (Answer: 𝑤 = −

3%(𝑧+1)
)

𝑧−3

4. 𝑧1 = 1, 𝑧2 = 𝑖, 𝑧3 = −1 and 𝑤1 = 𝑖, 𝑤2 = 0, 𝑤3
= −𝑖 (Answer: 𝑤 = −

%𝑖𝑧+1
)

%𝑖𝑧−1

Page 44 of 57

Experiment 6

Program to find fixed points of bilinear transformations.

Aim: To find the fixed points of a bilinear transformation using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

%i

Complex imaginary unit √−1
assume(r>0) To declare that r is positive
realpart (expr) Returns the real part of expr.
imagpart (expr) Returns the imaginary part of the expression expr.
conjugate (z) Returns the complex conjugate of z.

abs (z)

The abs function represents the mathematical absolute
value function and works for both numerical and
symbolic values.

cabs (expr)
Calculates the absolute value of an expression
representing a complex number.

atan2 (y, x) yields the value of atan(y/x) in the interval −%𝑝𝑖 to %𝑝𝑖.

rectform (expr)
Returns an expression 𝑎 + 𝑏 %𝑖 equivalent to expr, such
that a and b are purely real

:= The function definition operator.

f(x_1, ..., x_n) := expr
Defines a function named f with arguments x_1, …, x_n
and function body expr

subst ([eq_1, ..., eq_k], expr)
For each equation, the right side will be substituted for
the left in the expression expr.

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and
radicals.

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise
the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

solve (expr, x)
Solves the algebraic equation expr for the variable x and
returns a list of solution equations in x

inf inf represents real positive infinity
%pi; 𝜋, an irrational number

Note:1. Press Shift+Enter for evaluation of commands and display of output.

2. Replace semicolon (;) by dollar ($) to suppress output of any input line.
3. Replace dollar ($) by semicolon (;) to see output of any input line.
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

of all symbols

Page 45 of 57

Definitions and Formulae:

Bilinear transformation: A transformation of the form 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑

is called a Bilinear

transformation or linear fractional transformation, where 𝑎, 𝑏, 𝑐, 𝑑 are complex constants and

𝑎𝑑 − 𝑏𝑐 ≠ 0. This transformation is linear in both 𝑤 and 𝑧 and hence it is a bilinear

transformation. It is also called Mobius transformation. Inverse transformation is 𝑧 =
−𝑑𝑤+𝑏

𝑐𝑤−𝑎

Fixed points or Invariant points of a transformation: If 𝑤 = (𝑧) is any transformation from

the 𝑧 −plane to the 𝑤 −plane, the fixed points of the transformation are the solutions of the

equation 𝑧 = 𝑓(𝑧). i.e., if 𝑤 = 𝑧 then it is a fixed point or invariant point of the transformation.

A fixed point is mapped to itself in the transformation. Invariant points are got by taking 𝑤 =

𝑧 in the transformation.

Fixed points or Invariant points of a Bilinear transformation: Fixed points of a bilinear

transformation 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑

are given by 𝑧 =
𝑎𝑧+𝑏

. On simplification this equation, we get
𝑐𝑧+𝑑

𝑐𝑧2 + (𝑑 − 𝑎) − 𝑏 = 0. Since, it is a quadratic in z, a bilinear transformation will have at

most two fixed points. In fact,

1. 𝑤 =
𝑎𝑧+𝑏

will have two finite fixed points if 𝑐 ≠ 0 and (𝑑 − 𝑎)2 + 4𝑎𝑐 ≠ 0
𝑐𝑧+𝑑

2. 𝑤 =
𝑎𝑧+𝑏

will have one finite fixed point if 𝑐 ≠ 0 and (𝑑 − 𝑎)2 + 4𝑎𝑐 = 0
𝑐𝑧+𝑑

3. 𝑤 =
𝑎𝑧+𝑏

will have ∞ and one finite fixed point if 𝑐 = 0 and 𝑎 ≠ 𝑑
𝑐𝑧+𝑑

4. 𝑤 =
𝑎𝑧+𝑏

will have ∞ as the only fixed point if 𝑐 = 0 and 𝑎 = 𝑑
𝑐𝑧+𝑑

Program:

Program to find the fixed points of a given bilinear transformation.

w(z):= given function of 𝑧$

SOL:solve(z=w(z),z)$

print("Given Bilinear Transformation is w(z)=",w(z))$

if length(SOL)=0 then print("Fixed point of w(z) is",inf)

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1])

else print("Fixed points of w(z) are",SOL[1], "and", SOL[2])$

Page 46 of 57

Worked Examples:

Problem 1. Write a program to find the fixed points of bilinear transformation 𝑤 =
1−𝑧

.
1+𝑧

Program:

Output:

w(z):=(1-z)/(1+z)$

SOL:solve(z=w(z),z)$

print("Given Bilinear Transformation is w(z)=",w(z))$

if length(SOL)=0 then print("Fixed point of w(z) is",inf)

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1])

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$

1 − 𝑧

𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) =
𝑧 + 1

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 (𝑧) 𝑎𝑟𝑒 𝑧 = −√2 − 1 𝑎𝑛𝑑 𝑧 = √2 − 1

Problem 2. Write a program to find the fixed points of bilinear transformation 𝑤 =
−3𝑧+5𝑖

.
1−𝑖𝑧

Program:

Output:

w(z):=(-3*z+5*%i)/(1-%i*z)$

SOL:solve(z=w(z),z)$

print("Given Bilinear Transformation is w(z)=",w(z))$

if length(SOL)=0 then print("Fixed point of w(z) is",inf)

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1])

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$

5%𝑖 − 3𝑧

𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤(𝑧) =
1 − %𝑖𝑧

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 (𝑧) 𝑎𝑟𝑒 𝑧 = %𝑖 𝑎𝑛𝑑 𝑧 = −5%𝑖

Page 47 of 57

Problem 3. Write a program to find the fixed points of bilinear transformation 𝑤 =
6𝑧−9

.
𝑧

Program:

Output:

w(z):=(6*z-9)/z$

SOL:solve(z=w(z),z)$

Problem 4. Write a program to find the fixed points of bilinear transformation 𝑤 = 𝑧 + 3.

Program:

w(z):=(-3*z+5*%i)/(1-%i*z)$

SOL:solve(z=w(z),z)$

print("Given Bilinear Transformation is w(z)=",w(z))$

print("Given Bilinear Transformation is w(z)=",w(z))$

if length(SOL)=0 then print("Fixed point of w(z) is",inf)

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1])

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$

6𝑧 − 9
𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤(𝑧) =

𝑧

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 (𝑧) 𝑖𝑠 𝑧 = 3

Page 48 of 57

Output:

if length(SOL)=0 then print("Fixed point of w(z) is",inf)

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1])

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$

𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = 𝑧 + 3

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑤(𝑧) 𝑖𝑠 ∞

Problem 5. Write a program to find the fixed points of bilinear transformation 𝑤 =
1

.
𝑧−2𝑖

Program:

Output:

w(z):=(-3*z+5*%i)/(1-%i*z)$

SOL:solve(z=w(z),z)$

print("Given Bilinear Transformation is w(z)=",w(z))$

if length(SOL)=0 then print("Fixed point of w(z) is",inf)

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1])

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$

1

𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) =
𝑧 − 2%𝑖

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑤(𝑧) 𝑖𝑠 𝑧 = %𝑖

Page 49 of 57

Exercise:

Write a program to find the fixed points of given bilinear transformation 𝑤.

1. 𝑤 =
3𝑧−5

𝑧+1

2. 𝑤 =
6𝑧−2𝑖

3−𝑖𝑧

3. 𝑤 =
𝑧+1

1−𝑧

(Answer: 𝑧 = %𝑖 𝑎𝑛𝑑 𝑧 = −5%)

(Answer: 𝑧 = 2%𝑖 𝑎𝑛𝑑 𝑧 = %)

(Answer: 𝑧 = −%𝑖 𝑎𝑛𝑑 𝑧 = %)

4. 𝑤 = 2𝑧 + 3 (Answer: 𝑧 = −3)

5. 𝑤 =
𝑧

2−𝑧

6. 𝑤 =
3𝑧−4

𝑧−1

7. 𝑤 =
3𝑖𝑧+1

𝑧+𝑖

8. 𝑤 =
(𝑖+2)−2

𝑧+𝑖

(Answer: 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 1)

(Answer: 𝑧 = 2)

(Answer: 𝑧 = %)

(Answer: 𝑧 = 1 − %𝑖 𝑎𝑛𝑑 𝑧 = %𝑖 + 1)

9. 𝑤 =
𝑧−3

𝑧+1

10. 𝑤 =
1

𝑧

(Answer:

(Answer:

𝑧 = −√3%𝑖 𝑎𝑛𝑑 𝑧 = √3%)

𝑧 = −1 𝑎𝑛𝑑 𝑧 = 1)

Page 50 of 57

Experiment 7

Program to verify De-Moivre’s theorem.

Aim: To verify DeMovire’s theorem using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

%i

Complex imaginary unit √−1
assume(r>0) To declare that r is positive
realpart (expr) Returns the real part of expr.
imagpart (expr) Returns the imaginary part of the expression expr.
conjugate (z) Returns the complex conjugate of z.

abs (z)

The abs function represents the mathematical absolute
value function and works for both numerical and
symbolic values.

cabs (expr)
Calculates the absolute value of an expression
representing a complex number.

rectform (expr)
Returns an expression a + b %i equivalent to expr, such
that a and b are purely real

atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi.

trigrat (expr)

Gives a canonical simplified quasilinear form of a
trigonometrical expression; expr is a rational fraction of
several sin, cos or tan, the arguments of them are linear
forms in some variables (or kernels) and %pi/n (n integer)
with integer coefficients.

subst (a, b, c) Substitutes a for b in c

subst ([eq_1, ..., eq_k], expr)
For each equation, the right side will be substituted for
the left in the expression expr.

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and
radicals.

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise
the expression evaluates to expr_0.

exp (x) or %e^x Represents the exponential function
sin (x) Trigonometric function sine of x
%pi; 𝜋, an irrational number

Note:1. Press Shift+Enter for evaluation of commands and display of output.

2. Replace semicolon (;) by dollar ($) to suppress output of any input line.
3. Replace dollar ($) by semicolon (;) to see output of any input line.
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

of all symbols

Page 51 of 57

Definitions and Formulae:

DeMoivre’s Theorem: For any real number 𝜃 and integer 𝑛,

(𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))𝑛 = 𝑐𝑜𝑠(𝑛𝜃) + 𝑖 𝑠𝑖𝑛(𝑛𝜃)

Further, for any real number 𝜃 and natural number 𝑛, 𝑐𝑜𝑠 (
𝜃

) + 𝑖 𝑠𝑖𝑛 (
𝜃
) is one of roots of the 𝑛-th

𝑛 𝑛

1 1

roots of (𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))𝑛 and all roots of 𝑛-th roots of (𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))𝑛 are given by

𝜃 + 2𝜋𝑘 𝜃 + 2𝜋𝑘
(𝑐𝑜𝑠 (

𝑛
) + 𝑖 𝑠𝑖𝑛 (

𝑛
)) 𝑓𝑜𝑟 𝑘 = 0, 1, 2, ⋯ , (𝑛 − 1).

In fact, for any rational number 𝑝 in canonical form (𝑖. 𝑒. , 𝑝 ∈ ℤ, 𝑞 ∈ ℕ, 𝐻𝐶(𝑝, 𝑞) = 1), all
𝑞

𝑝

values of (𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))𝑞 are given by

𝑝𝜃 + 2𝜋𝑘 𝑝𝜃 + 2𝜋𝑘
(𝑐𝑜𝑠 (

𝑞
) + 𝑖 𝑠𝑖𝑛 (

𝑞
)) 𝑓𝑜𝑟 𝑘 = 0, 1, 2, ⋯ , (𝑞 − 1).

Verification of DeMoivre’s Theorem: DeMovire’s theorem can be easily verified by equating its LHS

with RHS for given values of 𝜃 and 𝑛.

Program:

Program to verify DeMoivre’s Theorem for given values of 𝑛 and 𝜃

kill(all)$

n: given value of n (if given)$

θ: given value of θ (if given)$

LHS:(cos(θ)+%i*sin(θ))^n$

RHS:cos(n*θ)+%i*sin(n*θ)$

print("LHS=",LHS)$

print("On simplication, LHS=",trigrat(LHS))$

print("RHS=",RHS)$

if trigrat(LHS)=RHS then

print("DeMoivre's Theorem is verified")

else print("DeMoivre's Theorem is not verified")$

NOTE: Sometimes we use rectform(LHS) in place of trigrat(LHS) in the above program for

simplification. One can try different simplification functions to get right answer.

Page 52 of 57

Worked Examples:

Problem 1. Program to verify DeMoivre’s Theorem for 𝑛 = 2 and any 𝜃

Program:

Output:

kill(all)$

n:2$

LHS:(cos(θ)+%i*sin(θ))^n$

RHS:cos(n*θ)+%i*sin(n*θ)$

print("LHS=",LHS)$

print("On simplication, LHS=",trigrat(LHS))$

print("RHS=",RHS)$

if trigrat(LHS)=RHS then

print("DeMoivre's Theorem is verified")

else print("DeMoivre's Theorem is not verified")$

𝐿𝐻𝑆 = (%𝑖 sin(𝜃) + cos(𝜃))2

𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = %𝑖 sin(2𝜃) + cos(2𝜃)

𝑅𝐻𝑆 = %𝑖 sin(2𝜃) + cos(2𝜃)

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

Problem 2. Program to verify DeMoivre’s Theorem for 𝑛 = −3 and any 𝜃

Program:

Output:

kill(all)$

n:-3$

LHS:(cos(θ)+%i*sin(θ))^n$

RHS:cos(n*θ)+%i*sin(n*θ)$

print("LHS=",LHS)$

print("On simplication, LHS=",trigrat(LHS))$

print("RHS=",RHS)$

if trigrat(LHS)=RHS then

print("DeMoivre's Theorem is verified")

else print("DeMoivre's Theorem is not verified")$

1
𝐿𝐻𝑆 =

(%𝑖 sin(𝜃) + cos(𝜃))3

Page 53 of 57

𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = cos(3𝜃) − %𝑖 sin(3𝜃)

𝑅𝐻𝑆 = cos(3𝜃) − %𝑖 sin(3𝜃)

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

Problem 3. Program to verify DeMoivre’s Theorem for 𝑛 =
1

and any 𝜃
2

Program:

Output:

kill(all)$

n:1/2$

LHS:(cos(θ)+%i*sin(θ))^n$

RHS:cos(n*θ)+%i*sin(n*θ)$

print("LHS=",LHS)$

print("On simplication, LHS=",trigrat(LHS))$

print("RHS=",RHS)$

if trigrat(LHS)=RHS then

print("DeMoivre's Theorem is verified")

else print("DeMoivre's Theorem is not verified")$

𝐿𝐻𝑆 = √%𝑖 sin(𝜃) + cos(𝜃)

𝜃 𝜃
𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = %𝑖 sin () + cos ()

2 2
𝜃 𝜃

𝑅𝐻𝑆 = %𝑖 sin () + cos ()
2 2

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

Problem 4. Program to verify DeMoivre’s Theorem for 𝑛 =
1

and 𝜃 =
𝜋

3 4

Program:

kill(all)$

n:1/3$

θ:π/4$

LHS:(cos(θ)+%i*sin(θ))^n$

RHS:cos(n*θ)+%i*sin(n*θ)$

print("LHS=",LHS)$

print("On simplication, LHS=",trigrat(LHS))$

print("RHS=",RHS)$

Page 54 of 57

Output:

if trigrat(LHS)=RHS then

print("DeMoivre's Theorem is verified")

else print("DeMoivre's Theorem is not verified")$

1
%𝑖 1 3

𝐿𝐻𝑆 = (+)
√2 √2

𝜋 𝜋
𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = %𝑖 sin () + cos ()

12 12
𝜋 𝜋

𝑅𝐻𝑆 = %𝑖 sin () + cos ()
12 12

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

Problem 5. Program to verify DeMoivre’s Theorem for 𝑛 =
−2

and 𝜃 =
𝜋

3 6

Program:

Output:

kill(all)$

n:-2/3$

θ:π/6$

LHS:(cos(θ)+%i*sin(θ))^n$

RHS:cos(n*θ)+%i*sin(n*θ)$

print("LHS=",LHS)$

print("On simplication, LHS=",rectform(LHS))$

print("RHS=",RHS)$

if rectform(LHS)=RHS then

print("DeMoivre's Theorem is verified")

else print("DeMoivre's Theorem is not verified")$

1
𝐿𝐻𝑆 =

(
%𝑖

+

2

2

√3 3

2)

𝜋 𝜋

𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = cos () − %𝑖 sin ()
9 9

𝜋 𝜋
𝑅𝐻𝑆 = cos (

9
) − %𝑖 sin (

9
)

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

Page 55 of 57

Exercise:

Write a program to verify DeMoivre’s Theorem for given 𝑛 and 𝜃:

1. 𝑛 =
1

100
and any 𝜃 (Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑)

2. 𝑛 = −3 and 𝜃 =
𝜋

6

(Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑)

3. 𝑛 =
1

10

and 𝜃 =
𝜋

3
(Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑)

4. 𝑛 = −4 and 𝜃 =
𝜋

3
(Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑)

5. 𝑛 = −3 and 𝜃 = 3 (Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑)

6. 𝑛 = 4 and 𝜃 = 4 (Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑)

7. 𝑛 =
−2

and 𝜃 =
−𝜋

(Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑)
3 4

Page 56 of 57

Experiment 9
Program to find upper and the lower Riemann sums with respect to a given
partition.
 If 𝑎 = 𝑥଴ < 𝑥ଵ < ⋯ < 𝑥௡ = 𝑏, then the finite ordered set 𝑃 = {𝑥଴, 𝑥ଵ, … , 𝑥௡} is called a partition of
[𝑎, 𝑏].
Let 𝑓: [𝑎, 𝑏] → ℝ be a bounded function and 𝑃 = {𝑎 = 𝑥଴, 𝑥ଵ, … , 𝑥௡ = 𝑏} be a partition of [𝑎, 𝑏]. Let
𝛿௥ = 𝑥௥ − 𝑥௥ିଵ, is the length of each subinterval [𝑥௥ , 𝑥௥ିଵ], 𝑟 = 1, 2, … , 𝑛. 𝑓 is bounded on [𝑎, 𝑏] ⇒ 𝑓 is
bounded on each subintervals [𝑥௥ , 𝑥௥ିଵ], 𝑟 = 1, 2, … , 𝑛. Let 𝑀௥ = Supremun of 𝑓 and 𝑚௥ = Infimum of 𝑓 in
[𝑥௥ , 𝑥௥ିଵ], 𝑟 = 1, 2, … , 𝑛. Then 𝐿(𝑃, 𝑓) = ∑ 𝑚௥𝛿௥

௡
௡ୀଵ is called the lower Reimann sum of 𝑓 and 𝑈(𝑃, 𝑓) =

∑ 𝑀௥𝛿௥
௡
௡ୀଵ is called the upper Reimann sum of 𝑓.

Program: Write a Maxima program to find upper and the lower Riemann sum of 𝑓(𝑥) = 𝑥ଶ over the

partition 𝑝 = {0,
ଵ

ସ
,

ଶ

ସ
,

ଷ

ସ
, 1} of [0, 1].

 kill(all)$
 f(x):=x^2;
 a:0$
 b:1$
 n:4$
 delta_x:(b-a)/n$
 p:makelist(a+i* delta_x,i,0,n);
 l_sum:0$
 u_sum:0$
 for i:1 thru length(p)-1 do
 (
 i1(i):=[p[i],p[i+1]],
 d(i):=p[i+1]-p[i],
 m(i):=f(p[i]),
 M(i):=f(p[i+1]),
 l_sum:l_sum+m(i)*d(i),
 u_sum:u_sum+M(i)*d(i));
 print("Upper sum",u_sum)$
 print("Lower sum",l_sum)$

Output:

(%o1) f(x):=x^2
(%o6) [0,1/4,1/2,3/4,1]
(%o9) done

"Upper sum"" "15/32" "

"Lower sum"" "7/32" "

Exercise:
Write a Maxima program to find upper and the lower Riemann sum of

1. 𝑓(𝑥) = sin (𝑥) for 𝑥 ∈ [0,
గ

ଶ
] and 𝑝 = {0,

𝜋

ସ
,

𝜋

ଶ
} of [0, 𝜋].

2. 𝑓(𝑥) = 𝑥ଷ for 𝑥 ∈ [0, 1] and 𝑝 = {0,
ଵ

ଷ
,

ଶ

ଷ
, 1} of [0, 1].

Page 57 of 57

Experiment 10
Program to test Riemann integrability.

Lower Riemann Integral of f on [a,b] is define as sup {L(P,f)} 𝑝∈௣ P[a,b] and is denoted by ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
.

Upper Riemann Integral of f on [a,b] is defined as inf {U(P,f)} p P[a,b] and is denoted by∫ 𝑓(𝑥)𝑑𝑥
௕ത

௔
.

Riemann Integral – A bounded function f is said to be Riemann integrable on [a,b] if

 ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
= ∫ 𝑓(𝑥)𝑑𝑥

௕ത

௔
 and the common value is denoted by ∫ 𝑓(𝑥)𝑑𝑥

௕

௔

NOTE: Let P={a=} be a partition of [a,b] with n equal subintervals. Then length of each subinterval is
 (௕ି௔)

௡
.

If 𝑓(𝑥) is monotonically increasing in the subinterval [𝑥௥ , 𝑥௥ିଵ], then maximum attains at 𝑥௥ and hence

𝑀௥ = Supremun of 𝑓 = 𝑓(𝑥௥) = 𝑓 ቀ𝑎 + 𝑟
௕ି௔

௡
ቁ, minimum attains at 𝑥௥ିଵ and hence 𝑚௥ = infimum of 𝑓 =

𝑓(𝑥௥ିଵ) = 𝑓 ቀ𝑎 + (𝑟 − 1)
௕ି௔

௡
ቁ.

If 𝑓(𝑥) is monotonically decreasing in the subinterval [𝑥௥ , 𝑥௥ିଵ], then maximum attains at 𝑥௥ିଵ and

hence 𝑀௥ = Supremun of 𝑓 = 𝑓(𝑥௥ିଵ) = 𝑓 ቀ𝑎 + (𝑟 − 1)
௕ି௔

௡
ቁ, minimum attains at 𝑥௥ and hence 𝑚௥ =

infimum of 𝑓 = 𝑓(𝑥௥) = 𝑓 ቀ𝑎 + 𝑟
௕ି௔

௡
ቁ.

Program: Write a Maxima program to verify the function 𝑓(𝑥) = 𝑥ଷ is Reimann integral or not over [0, 1].
 kill(all)$
 f(x):=x^3;
 a:0$
 b:1$
 Ir:[((r-1)*b)/n,(r*b)/n]$
 Mr:f(Ir[2])$
 mr:f(Ir[1])$
 dr:ratsimp(Ir[2]-Ir[1])$
 Ur:sum((mr*dr),r,1,n),simpsum$
 Ur1:ratsimp(Ur)$
 Lr:sum((mr*dr),r,1,n),simpsum$
 Lr1:ratsimp(Lr)$
 U_rsum:limit(Ur1,n,inf)$
 print("Upper Riemann integral is",U_rsum)$
 L_rsum:limit(Lr1,n,inf)$
 print("Lower Riemann integral is",L_rsum)$
 if U_rsum = L_rsum then
 print("the given function is R-integrable on", [a,b])
 else
 print("the given function is not R-integrable on", [a, b])$
Output:
(%o1) f(x):=x^3
"Upper Riemann integral is"" "1/4" "

"Lower Riemann integral is"" "1/4" "

"the given function is R-integrable on [0,1]"" "

Page 58 of 57

Exercise:
Write a Maxima program to verify the function

1. 𝑓(𝑥) = 3𝑥 + 1 is Reimann integral or not over [1, 3].

Page 59 of 57

Experiment 11
Program to evaluate Riemann integral as a limit of sum.

Program: Write a Maxima program to evaluate Riemann integral as a limit of sum of 𝑓(𝑥) = 2𝑥ଶ − 3𝑥 + 5
in [0, 1].

 kill(all)$
 f(x):=2*x^2-3*x+5;
 print("The function is bounded and continuous and hence integrable")$
 a:0$
 b:1$
 dr:(b-a)/n$
 xr:a+r*dr$
 sum:sum(f(xr)*dr,r,1,n),simpsum$
 s:ratsimp(sum)$
 L_sum:limit(s,n,inf)$
 print("Riemann integral as limit of sum is",L_sum)$

Output:
(%o1) f(x):=2·x^2-3·x+5

"The function is bounded and continuous and hence integrable"
" "

"Riemann integral as limit of sum is"" "25/6" "

Page 60 of 57

Experiment 12
Program to evaluate𝚪(𝒏) for 𝒏 is positive integer and non-integer.

If 𝑛 > 0 then the integral ∫ 𝑥௡ିଵ𝑒ି௫ஶ

଴
𝑑𝑥 which is obviously a function of 𝑛, is called a Gemma function of 𝑛 and is denoted

by Γ(𝑚, 𝑛). Thus Γ(𝑛) = ∫ 𝑥௡ିଵ𝑒ି௫ஶ

଴
𝑑𝑥 ∀ 𝑛 > 0. Gamma function is called the Second Eulerian Integral.

Program: Write a maxima program to evaluate Γ(2).
 kill(all)$
 gamma(2);
Output:
 1
Program: Write a maxima program to evaluate Γ(1/2).
 kill(all)$
 gamma(1/2);
Output:
 sqrt(%pi)

Exercise:
Write a program to evaluate

1. Γ(5). Ans: 24

2. Γ(7). Ans: 720

3. Γ(−1/2). Ans: −2√π

4. Γ(3/2). Ans: √
஠

ଶ

Page 61 of 57

Experiment 13
Program to evaluate𝛽(𝒎, 𝒏) for 𝒎 > 0 and 𝒏 > 0.

If 𝑚 > 0, 𝑛 > 0 then the integral ∫ 𝑥௠ିଵ(1 − 𝑥)௡ିଵଵ

଴
𝑑𝑥 which is obviously a function of 𝑚 and 𝑛 is called a Beta function

and is denoted by 𝛽(𝑚, 𝑛). Thus 𝛽(𝑚, 𝑛) = ∫ 𝑥௠ିଵ(1 − 𝑥)௡ିଵଵ

଴
𝑑𝑥 ∀ 𝑚 > 0, 𝑛 > 0. Beta function is called the first Eulerian

Integral.

Program: Write a maxima program to evaluate 𝛽(𝑥, 𝑦).
 kill(all)$
 makefact(beta(x,y));

Output:
 ((x-1)!*(y-1)!)/(y+x-1)!
Program: Write a maxima program to evaluate 𝛽(2,3).
 kill(all)$
 makefact(beta(2,3));
Output:
 1/12

Exercise:
Write a program to evaluate

1. 𝛽 ቀ
ହ

ଶ
,

ଷ

ଶ
ቁ Ans:

஠

ଵ଺

2. 𝛽 ቀ
ଵ

ଶ
,

ଵଵ

ଶ
ቁ Ans:

଺ଷ஠

ଶହ଺

BLDEA’s s.B. Arts AnD K.C.P. sCiEnCE

CoLLEgE, VijAyAPur
(Affiliated to Rani Channamma University, Belagavi)

Practical’s on DSC 2
VECtor CALCuLus AnD AnALytiCAL

gEomEtry
(As PEr nEP-2020)

mAnuAL
B. Sc. V Semester

Name: ………………………………………………………………………………………...

Class: ……………………………………………………………………………………………

UUCMS No: …………………………………………………………………………………

DEPARTMENT OF MATHEMATICS

Page 2 of 42

CONTENTS

Sl. No. Title Page No

1 Contents 2
2 List of Experiments 3

3
Experiment 1
Program on multiple product of vectors: Scalar and Cross product

4

4
Experiment 2
Program on vector differentiation and finding unit tangent.

12

5
Experiment 3
Program to find curvature and torsion of a space curve.

18

6

Experiment 4
Program to find the gradient and the Laplacian of a scalar function and
divergence and curl of a vector function.

25

7
Experiment 5
Program to demonstrate the physical interpretation of gradient, divergence and curl.

33

8
Experiment 6
Program to evaluate a vector line integral.

41

9
Experiment 7
Program to evaluate a surface integral.

43

10
Experiment 8
Program to evaluate a volume integral.

45

11
Experiment 9
Program to verify Green’s theorem.

47

12
Experiment 10
Program to find equation and plot sphere, cone and cylinder.

50

13
Experiment 11
Program to find distance between a straight line and a plane.

53

14
Experiment 12
Program to construct and plot some standard surfaces.

56

Page 3 of 42

For Fifth Semester DSC 2 Mathematics
(Practical on Vector Calculus and Analytical Geometry)

(4 Hours per Week and 56 hours per Semester)

1. Program on multiple product of vectors: Scalar and Cross product

2. Program on vector differentiation and finding unit tangent.

3. Program to find curvature and torsion of a space curve.

4. Program to find the gradient and the Laplacian of a scalar function and

divergence and curl of a vector function.

5. Program to demonstrate the physical interpretation of gradient, divergence and

curl.

6. Program to evaluate a vector line integral.

7. Program to evaluate a surface integral.

8. Program to evaluate a volume integral.

9. Program to verify Green’s theorem.

10. Program to find equation and plot sphere, cone and cylinder.

11. Program to find distance between a straight line and a plane.

12. Program to construct and plot some standard surfaces.

Page 4 of 42

Experiment 1

Program on multiple product of vectors: Scalar and Cross product.

Aim: To find the Scalar and Cross Product of two vectors and Scalar triple product and Vector triple
product of three vectors using Mathematics Softwares (FOSS).

Software: Maxima
Keys:

Key Function
load ("vect") vect is a package of functions for vector analysis.

load ("vect") loads this package
express (expr) Expands differential operator nouns into expressions in terms of partial

derivatives. express recognizes the operators grad, div, curl, laplacian.
:= To define a function/expression

diff
When diff is present as an evflag in call to ev, all differentiations indicated in
expr are carried out.

grad() gradient operator
div() divergence operator
laplacian() Laplacian operator
curl() curl operator
~ The wedge product operator is denoted by the tilde ~. This is used to compute

cross product of vectors.
* (asterik) Commutative Multiplication
. (dot) Noncommutative multiplication and scalar product

coeff (expr, x)
Returns the coefficient of x in expr, where expr is a polynomial or a monomial
term in x.

apply(‘matrix, nested
lists)

Converts nested lists of same length into a matrix

[a_1,…,a_n]; To create a list [a_1,…,a_n]
A[i] [and] also enclose the subscripts of a list. A[i] will be i-th element of list A

expand (expr) Expands expression expr.
^ (Carrot Symbol) or ** For index/power/exponentiation (Commutative)

trigreduce (expr, x)

Combines products and powers of trigonometric and hyperbolic sin’s and cos’s
of x into those of multiples of x. It also tries to eliminate these functions when
they occur in denominators. If x is omitted then all variables in expr are used.

determinant (M) Computes the determinant of M
print (“text”, expr)$ Displays text within inverted commas and evaluates and displays expr
radcan(expr) Simplifies expr, which can contain logs, exponentials, and radicals
acos() arc cos or cos-1 function

abs ()
The abs function represents the mathematical absolute value function and works
for both numerical and symbolic values.

mat_norm (M, frobenius) Return the frobenius (the Frobenius matrix norm) of the matrix M.

load ("eigen") The package eigen contains several functions devoted to the symbolic
computation of eigenvalues and eigenvectors. load ("eigen") loads this package

unitvector (x)
Returns x/norm(x); this is a unit vector in the same direction as x.
load ("eigen") loads this function.

Page 5 of 42

Definitions and Formulae:

Plane Vectors and Space Vectors: Let 𝑃(𝑥, 𝑦) be a point in the plane. The position vector of 𝑃 is given

by 𝑟⃗ = 𝑥 𝑖̂ + 𝑦 𝑗̂ where 𝑖 ̂and 𝑗̂ are unit vectors along positive 𝑥 −axis and 𝑦 −axis respectively.

Similarly, for a point 𝑃(𝑥, 𝑦, 𝑧) in the space, the position vector is 𝑟 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ where 𝑖̂ and

𝑗̂ and 𝑘̂ are unit vectors along positive 𝑥 −axis, 𝑦 −axis and 𝑧 −axis respectively. Thus, a vector

𝑎⃗ = 𝑥 𝑖̂ + 𝑦 𝑗̂ 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 ∈ ℝ is a plane vector and 𝑎⃗ = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦, 𝑧 ∈ ℝ is a

space vector.

Magnitude of a vector: Magnitude of a plane vector 𝑎⃗ = 𝑥 𝑖̂ + 𝑦 𝑗̂ is |𝑎⃗| = √𝑥2 + 𝑦2 and magnitude

of a space vector 𝑎⃗ = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ is |𝑎⃗| = √𝑥2 + 𝑦2 + 𝑧2.

Unit vector: Unit vector in the direction of 𝑎⃗ is 𝑎̂ =
𝑎⃗⃗

.
|𝑎⃗⃗|

Scalar Product/ Dot product of two space vectors: For two space vectors 𝑎⃗ = 𝑥1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 𝑘̂ and

𝑏⃗⃗ = 𝑥2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 𝑘̂, their scalar product or dot product is the scalar 𝑎⃗ ∙ 𝑏⃗ = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2.

Also note that 𝑎⃗ ∙ 𝑏⃗⃗ = 𝑏⃗⃗ ∙ 𝑎⃗.

Angle two space vectors: Angle between two space vectors 𝑎⃗ = 𝑥1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 𝑘̂ and 𝑏⃗⃗ = 𝑥2 𝑖̂ +

𝑦2

𝑗̂ + 𝑧2 𝑘̂, is given by 𝜃 = 𝑐𝑜𝑠−1 (
 𝑎⃗⃗∙𝑏⃗⃗

).
|𝑎⃗⃗||𝑏⃗⃗|

Vector Product/ Cross Product of two space vectors: For two space vectors 𝑎⃗ = 𝑥1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 𝑘̂ and

𝑏⃗⃗ = 𝑥2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 𝑘̂, their cross product or vector product 𝑎⃗ × 𝑏⃗⃗ is the vector given by

𝑖̂ 𝑗̂ 𝑘̂

𝑎⃗ × 𝑏⃗⃗ = |𝑥1 𝑦1 𝑧1| and 𝑏⃗ × 𝑎⃗ = −𝑎⃗ × 𝑏⃗⃗
𝑥2 𝑦2 𝑧2

Scalar Triple Product/ Box product of three space vectors: For three space vectors 𝑎⃗ = 𝑥1 𝑖 ̂+ 𝑦1 𝑗̂ +

𝑧1 𝑘̂, 𝑏⃗ = 𝑥2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 𝑘̂ and 𝑐 = 𝑥3 𝑖̂ + 𝑦3 𝑗̂ + 𝑧3 𝑘̂, their scalar triple product or box product

𝑥1 𝑦1 𝑧1
(𝑎⃗ × 𝑏⃗⃗) ∙ 𝑐 = 𝑎⃗ ∙ (𝑏⃗⃗ × 𝑐) is the scalar [𝑎⃗, 𝑏⃗⃗, 𝑐] = |𝑥2 𝑦2 𝑧2|.

𝑥3 𝑦3 𝑧3

Vector Triple Product of three space vectors: For three space vectors 𝑎⃗ = 𝑥1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 𝑘̂, 𝑏⃗⃗ =

𝑥2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 𝑘̂ and 𝑐 = 𝑥3 𝑖̂ + 𝑦3 𝑗̂ + 𝑧3 𝑘̂, their vector triple products are the vectors given by:

(𝑎⃗ × 𝑏⃗⃗) × 𝑐 = (𝑎⃗ ∙ 𝑐) 𝑏⃗⃗ − (𝑏⃗⃗ ∙ 𝑐) 𝑎⃗

𝑎⃗ × (𝑏⃗⃗ × 𝑐) = (𝑎⃗ ∙ 𝑐) 𝑏⃗⃗ − (𝑎⃗ ∙ 𝑏⃗) 𝑐

Area of Parallelogram and Volume of a Parallelepiped: Area of parallelogram whose sides are vectors

𝑎⃗ and 𝑏⃗ is |𝑎⃗ × 𝑏⃗⃗| and the volume of a parallelepiped whose edges are vectors 𝑎⃗, 𝑏⃗ and 𝑐 is the

absolute value of their scalar triple product [𝑎⃗, 𝑏⃗⃗, 𝑐].

Page 6 of 42

Program:

Program to find the scalar product and cross product of two vectors. Also, to find the magnitude.

(i.e. to find 𝑎⃗ ∙ 𝑏⃗⃗, 𝑎⃗ × 𝑏⃗⃗, 𝑏⃗⃗ × 𝑎⃗, |𝑎⃗ × 𝑏⃗⃗| and so on for 𝑎⃗ = 𝑎1 𝑖̂ + 𝑎2 𝑗̂ + 𝑎3𝑘̂ and 𝑏⃗⃗ = 𝑏1 𝑖̂ + 𝑏2 𝑗̂ + 𝑏3𝑘̂)

load("vect")$
norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$
dot(x,y):=x.y$
cross(x,y):=ev(express(x~y),diff)$
J:[i,j,k]$
a:[a1, a2, a3] $
b: [b1, b2, b3] $
print("vector a=", a.J)$
print("vector b=", b.J)$
print("Dot Product a.b=",dot(a,b))$
print("Cross Product axb=", cross(a,b).J)$
print("Cross Product bxa=", cross(b,a).J)$
print("Magnitude of axb=", norm(cross(a,b)))$

Program to find the scalar triple product and vector triple product of three vectors. (i.e. to find [𝑎⃗, 𝑏⃗⃗, 𝑐],

(𝑎⃗ × 𝑏⃗⃗) × 𝑐, 𝑎⃗ × (𝑏⃗⃗ × 𝑐) and so on for 𝑎⃗ = 𝑎1 𝑖 ̂+ 𝑎2 𝑗̂ + 𝑎3𝑘̂ , 𝑏⃗⃗ = 𝑏1 𝑖 ̂+ 𝑏2 𝑗̂ + 𝑏3𝑘̂ and 𝑐 = 𝑐1 𝑖 ̂+ 𝑐2 𝑗̂ + 𝑐3𝑘̂)

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

cross(x,y):=ev(express(x~y),diff)$

stp(x,y,z):=cross(x,y).z$

vtp1(x,y,z):=ev(express(cross(x,y)~z),diff)$

vtp2(x,y,z):=ev(express(x~cross(y,z)),diff)$

J:[i,j,k]$

a:[a1, a2, a3] $
b: [b1, b2, b3] $
c:[c1, c2, c3]$
print("vector a=", a.J)$

print("vector b=", b.J)$

print("vector c=", c.J)$

print("Scalar triple product [a,b,c]=", stp(a,b,c))$

print("Vector triple product (axb)xc=", vtp1(a,b,c).J)$

print("Vector triple product ax(bxc)=", vtp2(a,b,c).J)$

print("Magnitude of (axb)xc=", norm(vtp1(a,b,c)))$

print("Magnitude of ax(bxc)=", norm(vtp2(a,b,c)))$

Page 7 of 42

Worked Examples:

Problem 1. Write a program to find i) 𝑎⃗ ∙ 𝑏⃗⃗ ii) 𝑎⃗ × 𝑏⃗⃗ iii) 𝑏⃗⃗ × 𝑎⃗ and iv) |𝑎⃗ × 𝑏⃗ |

where 𝑎⃗ = 2 𝑖̂ − 3 𝑗̂ − 𝑘̂ and 𝑏⃗⃗ = 𝑖̂ + 4 𝑗̂ − 2 𝑘̂

Program:

Output:

load("vect")$
norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$
dot(x,y):=x.y$
cross(x,y):=ev(express(x~y),diff)$
J:[i,j,k]$
a:[2,-3,-1]$
b:[1,4,-2]$
print("vector a=", a.J)$
print("vector b=", b.J)$
print("Dot Product a.b=",dot(a,b))$
print("Cross Product axb=", cross(a,b).J)$
print("Cross Product bxa=", cross(b,a).J)$
print("Magnitude of axb=", norm(cross(a,b)))$$

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = −𝑘 − 3𝑗 + 2𝑖

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −2𝑘 + 4𝑗 + 𝑖

𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑎. 𝑏 = −8

𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑥𝑏 = 11𝑘 + 3𝑗 + 10𝑖

𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑏𝑥𝑎 = −11𝑘 − 3𝑗 − 10𝑖

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎𝑥𝑏 = √230

Problem 2. Write a program to find i) 𝑎⃗ ∙ 𝑏⃗⃗ ii) 𝑎⃗ × 𝑏⃗⃗ iii)) |𝑎⃗ × 𝑏⃗⃗| iv) (𝑎⃗ + 𝑏⃗⃗) × (𝑎⃗ − 𝑏⃗)

v) unit vector of 𝑎⃗ where 𝑎⃗ = 2 𝑖̂ + 3 𝑗̂ − 𝑘̂ and 𝑏⃗⃗ = 𝑖̂ − 𝑗̂ − 2 𝑘̂

Program:

load("vect")$
norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$
dot(x,y):=x.y$
cross(x,y):=ev(express(x~y),diff)$
J:[i,j,k]$
a:[2,3,-1]$
b:[1,-1,-2]$
print("vector a=", a.J)$
print("vector b=", b.J)$
print("Dot Product a.b=",dot(a,b))$
print("Cross Product axb=", cross(a,b).J)$
print("Magnitude of axb=", norm(cross(a,b)))$
print("Cross Product (a+b)x(a-b)=", cross(a+b,a-b).J)$
print("Unit vector of a=", expand(a.J/norm(a)))$

Page 8 of 42

Output:

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = −𝑘 + 3𝑗 + 2𝑖

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −2𝑘 − 𝑗 + 𝑖

𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑎. 𝑏 = 1

𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑥𝑏 = −5𝑘 + 3𝑗 − 7𝑖

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎𝑥𝑏 = √83

𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝑎 + 𝑏)𝑥(𝑎 − 𝑏) = 10𝑘 − 6𝑗 + 14𝑖

𝑘 3𝑗 2𝑖
𝑈𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑎 = − + +

√14 √14 √14

Problem 3. Write a program to find i) [𝑎⃗, 𝑏⃗⃗, 𝑐] ii) 𝑎⃗ × (𝑏⃗⃗ × 𝑐) iii) 𝑎⃗ × (𝑏⃗⃗ × 𝑐) iv) |𝑎⃗ × (𝑏⃗⃗ × 𝑐)|

v) |𝑎⃗ × (𝑏⃗⃗ × 𝑐)| where 𝑎⃗ = 3 𝑖̂ − 𝑗̂ + 2 𝑘̂, 𝑏⃗⃗ = 2𝑖̂ + 𝑗̂ − 𝑘̂ and 𝑐 = 𝑖̂ − 2𝑗̂ + 2 𝑘̂

Program:

Output:

load("vect")$
norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$
cross(x,y):=ev(express(x~y),diff)$
stp(x,y,z):=cross(x,y).z$
vtp1(x,y,z):=ev(express(cross(x,y)~z),diff)$
vtp2(x,y,z):=ev(express(x~cross(y,z)),diff)$
J:[i,j,k]$
a:[3,-1,2]$
b:[2,1,-1]$
c:[1,-2,2]$
print("vector a=", a.J)$
print("vector b=", b.J)$
print("vector c=", c.J)$
print("Scalar triple product [a,b,c]=", stp(a,b,c))$
print("Vector triple product (axb)xc=", vtp1(a,b,c).J)$
print("Vector triple product ax(bxc)=", vtp2(a,b,c).J)$
print("Magnitude of (axb)xc=", norm(vtp1(a,b,c)))$
print("Magnitude of ax(bxc)=", norm(vtp2(a,b,c)))$

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = 2𝑘 − 𝑗 + 3𝑖

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −𝑘 + 𝑗 + 2𝑖

𝑣𝑒𝑐𝑡𝑜𝑟 𝑐 =2𝑘 − 2𝑗 + 𝑖

𝑆𝑐𝑎𝑙𝑎𝑟 𝑡𝑟𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 [𝑎, 𝑏, 𝑐] = −5

𝑉𝑒𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑎𝑥𝑏)𝑥𝑐 = −5𝑘 + 7𝑗 + 24𝑖

𝑉𝑒𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑥(𝑏𝑥𝑐) = −15𝑘 + 15𝑗 + 15𝑖

Page 9 of 42

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 (𝑎𝑥𝑏)𝑥𝑐 = 5√26
3

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎𝑥(𝑏𝑥𝑐) = 532

3 3 3

Note: In the above answer 532 = 5 × 32 = 5√33 = 15√3. Don’t confuse it as (53)2

Problem 4. Write a program to find the angle between 𝑎⃗ = 2 𝑖̂ + 3𝑗̂ + 𝑘̂ and 𝑏⃗⃗ = 4𝑖̂ − 2𝑗̂ − 2𝑘̂

Program:

Output:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

dot(x,y):=x.y$

J:[i,j,k]$

a:[2,3,1]$

b:[4,-2,-2]$

θ:acos(dot(a,b)/(norm(a)*norm(b)))$

print("vector a=", a.J)$

print("vector b=", b.J)$

print("Angle between a and b is θ=", θ)$

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = 𝑘 + 3𝑗 + 2𝑖

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −2𝑘 − 2𝑗 + 4𝑖

𝜋
𝐴𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑎𝑛𝑑 𝑏 𝑖𝑠 𝜃 =

2

Problem 5. Write a program to find the area of parallelogram whose sides are

𝑎⃗ = 𝑖̂ − 4𝑗̂ − 𝑘̂ and 𝑏⃗⃗ = −2𝑖̂ − 𝑗̂ + 𝑘̂

Program:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

cross(x,y):=ev(express(x~y),diff)$

J:[i,j,k]$

a:[1,-4,-1]$

b:[-2,-1,1]$

print("vector a=", a.J)$

print("vector b=", b.J)$

print("Area of Parallelogram=", norm(cross(a,b)))$

Page 10 of 42

Output:

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = 𝑘 + 3𝑗 + 2𝑖

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −2𝑘 − 2𝑗 + 4𝑖

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 = √107

Problem 6. Write a program to find the volume of parallelepiped whose edges are

𝑎⃗ = 2𝑖̂ − 3𝑗̂, 𝑏⃗⃗ = 𝑖̂ + 𝑗̂ − 𝑘̂ and 𝑐 = 3𝑖̂ − 𝑘̂

Program:

Output:

load("vect")$

cross(x,y):=ev(express(x~y),diff)$

stp(x,y,z):=cross(x,y).z$

J:[i,j,k]$

a:[2,-3,0]$

b:[1,1,-1]$

c:[3,0,-1]$

print("vector a=", a.J)$

print("vector b=", b.J)$

print("vector c=", c.J)$

print("Volume of Parallelopiped =", abs(stp(a,b,c)))$

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = 2𝑖 − 3𝑗

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −𝑘 + 𝑗 + 𝑖

𝑣𝑒𝑐𝑡𝑜𝑟 𝑐 = 3𝑖 − 𝑘

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑒𝑝𝑖𝑝𝑒𝑑 = 4

Page 11 of 42

Exercise:

I. Write a program to find i) 𝑎⃗ ∙ 𝑏⃗⃗ ii) 𝑏⃗⃗ ∙ 𝑎⃗ iii) 𝑎⃗ × 𝑏⃗⃗ iv) 𝑏⃗ × 𝑎⃗ v) |𝑎⃗ × 𝑏⃗ | vi) |𝑏⃗⃗ × 𝑎⃗|

vii) |𝑎⃗| viii) |𝑏⃗⃗| for given pair of vectors:

1. 𝑎⃗ = 2 𝑖̂ + 2 𝑗̂ − 𝑘̂ and 𝑏⃗⃗ = 6𝑖̂ − 3 𝑗̂ + 2 𝑘̂

2. 𝑎⃗ = 3 𝑖̂ − 2 𝑗̂ + 𝑘̂ and 𝑏⃗⃗ = 𝑖̂ − 3 𝑗̂ + 5 𝑘̂

II. Write a program to find i) [𝑎⃗, 𝑏⃗⃗, c⃗] ii) 𝑎⃗ × (𝑏⃗⃗ × 𝑐) iii) 𝑎⃗ × (𝑏⃗ × 𝑐) for the following

space vectors:

1. 𝑎⃗ = 𝑖̂ − 2𝑗̂ − 3 𝑘̂, 𝑏⃗⃗ = 2𝑖̂ + 𝑗̂ − 𝑘̂ and 𝑐 = 𝑖̂ + 3𝑗̂ − 2 𝑘̂

2. 𝑎⃗ = 3 𝑖̂ + 2𝑗̂ − 6 𝑘̂, 𝑏⃗ = 4𝑖̂ − 3 𝑗̂ + 𝑘̂ and 𝑐 = 4𝑖̂ − 2𝑗̂ + 4 𝑘̂

III. Write a program to find the angle between the following vectors:

1. 𝑎⃗ = 𝑖̂ + 𝑗̂ and 𝑏⃗ = 𝑗̂ + 𝑘̂ (Ans 𝜃 =
𝜋

)
3

2. 𝑎⃗ = 3 𝑖̂ + 2 𝑗̂ − 6𝑘̂ and 𝑏⃗⃗ = 4𝑖̂ − 3 𝑗̂ + 𝑘̂ (Ans 𝜃 =
𝜋

)
2

3. 𝑎⃗ = 4 𝑖̂ − 2 𝑗̂ + 4𝑘̂ and 𝑏⃗⃗ = 3 𝑖̂ − 6 𝑗̂ − 2 𝑘̂ (Ans 𝜃 = acos (
8

))
21

IV. Write a program to find the area of parallelogram whose sides are

1. 𝑎⃗ = 𝑖̂ − 2𝑗̂ − 3 𝑘̂, 𝑏⃗⃗ = 2𝑖̂ + 𝑗̂ − 𝑘̂ (Ans 5√3)

2. 𝑎⃗ = 3 𝑖̂ + 2𝑗̂ − 6 𝑘̂, 𝑏⃗ = 4𝑖̂ − 3 𝑗̂ + 𝑘̂ (Ans 7√26)

V. Write a program to find the volume of parallelepiped whose edges are

1. 𝑎⃗ = 𝑖̂ − 2𝑗̂ − 3 𝑘̂, 𝑏⃗⃗ = 2𝑖̂ + 𝑗̂ − 𝑘̂ and 𝑐 = 𝑖̂ + 3𝑗̂ − 2 𝑘̂ (Ans 20)

2. 𝑎⃗ = 3 𝑖̂ + 2𝑗̂ − 6 𝑘̂, 𝑏⃗ = 4𝑖̂ − 3 𝑗̂ + 𝑘̂ and 𝑐 = 4𝑖̂ − 2𝑗̂ + 4 𝑘̂ (Ans 78)

Page 12 of 42

Experiment 2

Program on Vector Differentiation and finding the Unit Tangent.

Aim: To find the derivatives of vector point functions and unit tangent vector using
Mathematics Softwares (FOSS).

Software: Maxima
Keys:

Key Function
load ("vect") vect is a package of functions for vector analysis.

load ("vect") loads this package
express (expr) Expands differential operator nouns into expressions in terms of

partial derivatives. express recognizes the operators grad, div, curl,
laplacian.

:= To define a function/expression

diff
When diff is present as an evflag in call to ev, all differentiations
indicated in expr are carried out.

~ The wedge product operator is denoted by the tilde ~. This is used to
compute cross product of vectors.

trigsimp (expr) Employs Pythagorean identities of trigonometric functions to
simplify expressions.

* (asterik) Commutative Multiplication
. (dot) Noncommutative multiplication and scalar product

coeff (expr, x)
Returns the coefficient of x in expr, where expr is a polynomial or a
monomial term in x.

apply(‘matrix, nested lists) Converts nested lists of same length into a matrix
[a_1,…,a_n]; To create a list [a_1,…,a_n]

A[i]
[and] also enclose the subscripts of a list. A[i] will be i-th
element of list A

diff (expr, x)
Returns the first partial derivative of expr with respect to the
variable x.

^ (Carrot Symbol) or ** For index/power/exponentiation (Commutative)

trigreduce (expr, x)
Combines products and powers of trigonometric and hyperbolic
sin’s and cos’s of x into those of multiples of x.

ev (expr, arg_1, …, arg_n) Evaluates the expression expr in the environment specified by

the arguments arg_1, …, arg_n.

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

radcan(expr)
Simplifies expr, which can contain logs, exponentials, and
radicals

factorout (expr,t)
Rearranges the sum expr into a sum of terms of the form f
(t)*g where g is a product of expressions not containing t

expand (expr) Expand expression expr.

Page 13 of 42

Definitions and Formulae:

Vector Function of a scalar variable: Let 𝑡 be a scalar variable. If for each value of 𝑡 there

corresponds a unique vector 𝐹⃗, then 𝐹⃗ is called a vector function of the scalar variable 𝑡. If 𝐹⃗ is a

space vector, then it will be of the form 𝐹⃗(𝑡) = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ where
𝑓1(𝑡), 𝑓2(𝑡) 𝑎𝑛𝑑 𝑓3(𝑡) are functions of 𝑡.

Derivative of a Vector Function: Let 𝐹⃗(𝑡) = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ be a vector function of a

scalar variable 𝑡. Then the derivatives of 𝐹⃗(𝑡) w.r.t. 𝑡 are defined as:
𝑑

(𝐹⃗(𝑡)) =
𝑑

(𝑓 (𝑡)) 𝑖̂ +
𝑑

(𝑓 (𝑡))𝑗̂ +
𝑑

(𝑓 (𝑡))𝑘̂

𝑑𝑡

𝑑2
⃗

𝑑𝑡 1

𝑑2

𝑑𝑡 2

𝑑2

𝑑𝑡 3

𝑑2
̂

𝑑𝑡2 (𝐹(𝑡)) =
𝑑𝑡2

(𝑓1(𝑡)) 𝑖̂ +
𝑑𝑡2

(𝑓2(𝑡))𝑗 ̂+
𝑑𝑡2

(𝑓3(𝑡))𝑘

and so on. Further, if 𝑡 is time then 𝑑 (𝐹⃗(𝑡)) is the velocity and 𝑑
2

(𝐹⃗(𝑡)) is the acceleration at

any time 𝑡.
𝑑𝑡 𝑑𝑡2

Space Curve: Let 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂ be the position vector of point 𝑃(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)).
Then, 𝑟⃗(𝑡) represents a space curve.

Tangent Vector and the Unit Tangent Vector: Let 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂ be a space curve.

Then the derivative 𝑑 (𝑟⃗(𝑡)) at a point 𝑃(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) represents a vector along the tangent to the
𝑑𝑡

curve at 𝑃. This is called tangent vector to 𝑟 at 𝑃 is denoted by 𝑇⃗⃗. A unit vector in the direction of 𝑇⃗⃗ is
called the unit tangent vector at P. This unit tangent vector is denoted by 𝑇̂. Thus,

𝑇⃗⃗ =
𝑑

(𝑟(𝑡)) =
𝑑

(𝑥(𝑡)) 𝑖̂ +
𝑑

(𝑦(𝑡))𝑗̂ +
𝑑

(𝑧(𝑡))𝑘̂
𝑑𝑡 𝑑𝑡

𝑇̂ =
𝑇⃗⃗

𝑑𝑡 𝑑𝑡

|𝑇⃗⃗|

Program:

Program to find the unit tangent vector to space curve 𝑟 = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ at 𝑡 = 𝑡0.

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

r:[f1(t), f2(t), f3(t)]$

r1:diff(r,t)$

T:r1.J/norm(r1)$

print("Space Curve r=", r.J)$

print("Unit Tangent Vector is T=",T)$

print("Unit Tangent Vector at given point is T=",expand(ev(T,t=t0)))$

Page 14 of 42

Program to find the velocity and acceleration of space curve 𝑟 = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ at 𝑡 = 𝑡0.

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

r:[f1(t), f2(t), f3(t)]$

r1:diff(r,t)$

r2:diff(r1,t)$

print("Space Curve r=", r.J)$

print("Velocity is v=",r1.J)$

print("Acceleration is a=",r2.J)$

print("Magnitude of v at given point =", ev(norm(r1),t= t0))$

print("Magnitude of a at given point =", ev(norm(r2),t= t0))$

Worked Examples:

Problem 1. Write a program to find the unit tangent to the curve 𝑟 = 𝑡2 𝑖̂ + 2𝑡𝑗̂ − 𝑡3𝑘̂ at 𝑡 = 1.

Program:

Output:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

r:[t^2,2*t,-t^3]$

r1:diff(r,t)$

T:r1.J/norm(r1)$

print("Space Curve r=", r.J)$

print("Unit Tangent Vector is T=",T)$

print("Unit Tangent Vector at given point is T=",expand(ev(T,t=1)))$

𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 = −𝑘𝑡3 + 𝑖𝑡2 + 2𝑗𝑡

−3𝑘𝑡2 + 2𝑖𝑡 + 2𝑗
𝑈𝑛𝑖𝑡 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑇 =

√9𝑡4 + 4𝑡2 + 4
3𝑘 2𝑗 2𝑖

𝑈𝑛𝑖𝑡 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = − + +
√17 √17 √17

Page 15 of 42

Problem 2. Write a program to find the unit tangent to the curve 𝑟 = 𝑐𝑜𝑠(3𝑡) 𝑖̂ + 𝑠𝑖𝑛(3𝑡)𝑗̂ + 4𝑡𝑘̂ at 𝑡 =
𝜋
.

4

Program:

Output:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

r:[cos(3*t),sin(3*t),4*t]$

r1:diff(r,t)$

T:r1.J/norm(r1)$

print("Space Curve r=", r.J)$

print("Unit Tangent Vector is T=",expand(trigsimp(T)))$

print("Unit Tangent Vector at given point is T=",expand(ev(T,t=π/4)))$

𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 = 𝑗 sin(3𝑡) + 𝑖 cos(3𝑡) + 4𝑘𝑡

𝑈𝑛𝑖𝑡 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑇 = −

3𝑖 sin(3𝑡)

5
+

3𝑗 cos(3𝑡)

5
+

4𝑘

5
4𝑘 3𝑗 3𝑖

𝑈𝑛𝑖𝑡 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = 5
−

5√2
−

5√2

Problem 3. Write a program to find the velocity and acceleration of a particle moving along the curve

𝑟 = (1 − 𝑡3) 𝑖̂ + (1 + 𝑡2)𝑗̂ + (2𝑡 − 5)𝑘̂ at any time 𝑡.

Program:

Output:

load("vect")$

J:[i,j,k]$

r:[1-t^3, 1+t^2, 2*t-5]$

r1:diff(r,t)$

r2:diff(r1,t)$

print("Space Curve r=", r.J)$

print("Velocity is v=",r1.J)$

print("Acceleration is a=",r2.J)$

𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 = 𝑖(1 − 𝑡3) + 𝑗(𝑡2 + 1) + 𝑘(2𝑡 − 5)

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑠 𝑣 = −3𝑖𝑡2 + 2𝑗𝑡 + 2𝑘

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 = 2𝑗 − 6𝑖𝑡

Page 16 of 42

Problem 4. Write a program to find the velocity and acceleration of a particle moving along the curve

𝑟 = 𝑒−𝑡 𝑖̂ + 2𝑐𝑜𝑠(3𝑡)𝑗̂ + 2𝑠𝑖𝑛(3𝑡)𝑘̂ at any time 𝑡. Also find the magnitude of velocity and

acceleration at 𝑡 = 0

Program:

Output:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

r:[exp(-t), 2*cos(3*t), 2*sin(3*t)]$

r1:diff(r,t)$

r2:diff(r1,t)$

print("Space Curve r=", r.J)$

print("Velocity is v=",r1.J)$

print("Acceleration is a=",r2.J)$

print("Velocity at given point is v=",ev(r1.J, t=0))$

print("Acceleration at given point is a=",ev(r2.J,t=0))$

print("Magnitude of v at given point =", ev(norm(r1),t=0))$

print("Magnitude of a at given point =", ev(norm(r2),t=0))$

𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 = 2𝑘 sin(3𝑡) + 2𝑗 cos(3𝑡) + 𝑖%𝑒−𝑡

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑠 𝑣 = −6𝑗 sin(3𝑡) + 6𝑘 cos(3𝑡) − 𝑖%𝑒−𝑡

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 = −18𝑘 sin(3𝑡) − 18𝑗 cos(3𝑡) + 𝑖%𝑒−𝑡

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑣 = 6𝑘 − 𝑖

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑎 = 𝑖 − 18𝑗

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑣 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 = √37

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 = 5√13

Page 17 of 42

Problem 5. Write a program to find the velocity and acceleration and their magnitudes of a particle

moving along the curve 𝑟 = (𝑠𝑖𝑛 𝑡) 𝑖̂ + (𝑐𝑜𝑠 𝑡) 𝑗̂ + 𝑡 𝑘̂ at any time 𝑡.
Program:

Output:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

r:[sin(t), cos(t), t]$

r1:diff(r,t)$

r2:diff(r1,t)$

print("Space Curve r=", r.J)$

print("Velocity is v=",r1.J)$

print("Acceleration is a=",r2.J)$

print("Magnitude of v at any point =", trigsimp(norm(r1)))$

print("Magnitude of a at any point =", trigsimp(norm(r2)))$

𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 =𝑖 sin(𝑡) + 𝑗 cos(𝑡) + 𝑘𝑡

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑠 𝑣 = −𝑗 sin(𝑡) + 𝑖 cos(𝑡) + 𝑘

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 = −𝑖 sin(𝑡) − 𝑗 cos(𝑡)

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑣 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 = √2

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 = 1

Exercise:

I. Write a program to find the unit tangent to the curve 𝑟⃗ at given point 𝑡:

1. 𝑟 = (𝑡2 + 1) 𝑖̂ + (4𝑡 − 3) 𝑗̂ + (2𝑡2 − 6𝑡) 𝑘̂ at 𝑡 = 2.

2. 𝑟 = 2𝑡2 𝑖̂ + (𝑡2 − 4𝑡) 𝑗̂ + (3𝑡 − 5) 𝑘̂ at 𝑡 = −1.

3. 𝑟 = 𝑡 𝑖̂ + 𝑡2 𝑗̂ + 𝑡3 𝑘̂ at 𝑡 = −1.

II. Write a program to find the velocity and acceleration of a particle moving along the curve

𝑟⃗ at any time 𝑡. Also find the magnitude of velocity and acceleration at given 𝑡:

1. 𝑟 = (2 𝑠𝑖𝑛 3𝑡) 𝑖̂ + (2 𝑐𝑜𝑠 3𝑡) 𝑗̂ + (8𝑡) 𝑘̂ at any time 𝑡

2. 𝑟 = (4 𝑐𝑜𝑠 𝑡) 𝑖̂ + (4 𝑠𝑖𝑛 𝑡) 𝑗̂ + (6𝑡) 𝑘̂ at 𝑡 = 0.

3. 𝑟 = (𝑡3 − 4𝑡) 𝑖̂ + (𝑡2 + 4𝑡) 𝑗̂ + (8𝑡2 − 3𝑡3) 𝑘̂ at 𝑡 = 2.

Page 18 of 42

Experiment 3

Program to find Curvature and Torsion of a space curve.

Aim: To find the Curvature and Torsion for a space curve at a given point using
Mathematics Softwares (FOSS).

Software: Maxima
Keys:

Key Function
load ("vect") vect is a package of functions for vector analysis.

load ("vect") loads this package
express (expr) Expands differential operator nouns into expressions in terms of

partial derivatives. express recognizes the operators grad, div, curl,
laplacian.

:= To define a function/expression

diff
When diff is present as an evflag in call to ev, all differentiations
indicated in expr are carried out.

~ The wedge product operator is denoted by the tilde ~. This is used to
compute cross product of vectors.

trigsimp (expr) Employs Pythagorean identities of trigonometric functions to
simplify expressions.

* (asterik) Commutative Multiplication
. (dot) Noncommutative multiplication and scalar product

coeff (expr, x)
Returns the coefficient of x in expr, where expr is a polynomial
or a monomial term in x.

apply(‘matrix, nested lists) Converts nested lists of same length into a matrix
[a_1,…,a_n]; To create a list [a_1,…,a_n]
A[i] [and] also enclose the subscripts of a list. A[i] will be i-th

element of list A

diff (expr, x)
Returns the first partial derivative of expr with respect to the
variable x.

^ (Carrot Symbol) or ** For index/power/exponentiation (Commutative)
trigreduce (expr, x) Combines products and powers of trigonometric and hyperbolic

sin’s and cos’s of x into those of multiples of x. It also tries to
eliminate these functions when they occur in denominators.

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

radcan(expr) Simplifies expr, which can contain logs, exponentials, and
radicals

/ (Backward Slash) Division
ev (expr, arg_1, …, arg_n) Evaluates the expression expr in the environment specified by

the arguments arg_1, …, arg_n.

Page 19 of 42

Definitions and Formulae:

Fundamental vectors of a Space Curve: Let 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂ be a space curve. With
usual notations, let T, N, and B represent the unit tangent, the principal normal and the binormal
respectively, to 𝑟⃗(𝑡) at any point 𝑡. These three unit vectors form a localized right-handed (B=T×N)
coordinate system (TNB frame or Frenet Frame) at any specified point of 𝑟⃗(𝑡).

Curvature and Radius of Curvature of a space curve: For a space curve Let 𝑟⃗(𝑡) = 𝑥(𝑡) 𝑖 ̂+

𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂, the unit tangent T and the principal normal N are connected by the relation
𝑑𝑻 = 𝜅𝑵, where s is arc length parameter. Here 𝜅 is called the curvature and the quantity 𝜌 =

1
is

𝑑𝑠

called the radius of curvature. Thus,

𝜅 = |

𝑑𝑻

|
𝑑𝑠

𝜅

|𝑟⃗⃗𝘍(𝑡)×𝑟⃗⃗⃗ 𝘍⃗⃗𝘍(𝑡)|

3 .
|𝑟⃗⃗𝘍(𝑡)|

Torsion and Radius of Torsion of a space curve: For a space curve 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂,

the binormal B and the principal normal N are connected by the relation 𝑑𝑩 = −𝑟𝑵, where s is arc
𝑑𝑠

length parameter. Here 𝑟 is called the torsion and the quantity 𝜎 =
1

is called the radius of torsion.
𝑐

Thus, 𝑟 = | 𝑑𝑩
| =

 [𝑟⃗⃗𝘍(𝑡), 𝑟⃗⃗⃗𝘍⃗⃗𝘍(𝑡), 𝑟⃗⃗⃗ 𝘍⃗⃗𝘍⃗⃗𝘍(𝑡)]
2 .

𝑑𝑠 |𝑟⃗⃗𝘍(𝑡)×𝑟⃗⃗⃗ 𝘍⃗⃗𝘍(𝑡)|

Note: Greek Letters 𝜅 and 𝑟 denote Curvature and Torsion respectively. But to avoid confusion between

𝜅 & 𝑘̂ and 𝑟 & 𝑡, in the following programs K is used for Curvature and T is used for Torsion.

Program:

Program to find the curvature and the torsion of 𝑟(𝑡) = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ at given point 𝑡 = 𝑡0.

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

cross(x,y):=ev(express(x~y),diff)$

stp(x,y,z):=cross(x,y).z$

J:[i,j,k]$

r:[f1(t), f2(t), f3(t)]$

r1:diff(r,t)$

r2:diff(r1,t)$

r3:diff(r2,t)$

K:norm(cross(r1,r2))/norm(r1)^3$

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$

print("Space curve is r=", r.J)$

print("Curvature is K=", radcan(K))$

print("Torsion is T=", radcan(T))$

print("Curvature at given point is K=", ev(K, t=t0))$

print("Torsion at given point is T=", ev(T, t=t0))$

=

Page 20 of 42

Worked Examples:

Problem 1. Write a program to find the curvature and the torsion of the space curve

at any point 𝑡 and at 𝑡 = 0.

𝑟⃗ = 𝑡 𝑖̂ + 𝑡

2𝑗 ̂+
2

𝑡

3
3𝑘̂

Program:

Output:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

cross(x,y):=ev(express(x~y),diff)$

stp(x,y,z):=cross(x,y).z$

J:[i,j,k]$

r:[t, t^2, 2/3*t^3]$

r1:diff(r,t)$

r2:diff(r1,t)$

r3:diff(r2,t)$

K:norm(cross(r1,r2))/norm(r1)^3$

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$

print("Space curve is r=", r.J)$

print("Curvature is K=", radcan(K))$

print("Torsion is T=", radcan(T))$

print("Curvature at given point is K=", ev(K, t=0))$

print("Torsion at given point is T=", ev(T, t=0))$

2𝑘𝑡3

𝑆𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = + 𝑗𝑡2 + 𝑖𝑡
3

2
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 =

4𝑡4 + 4𝑡2 + 1

2
𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 =

4𝑡4 + 4𝑡2 + 1

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐾 = 2

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = 2

Problem 2. Write a program to find the curvature and the torsion of the space curve 𝑟 = 𝑡2 𝑖̂ + 𝑡3 𝑗̂ + 𝑡 𝑘̂

at any point 𝑡. Also, find the curvature and the torsion at t=0.
Program:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

cross(x,y):=ev(express(x~y),diff)$

Page 21 of 42

Output:

stp(x,y,z):=cross(x,y).z$

J:[i,j,k]$

r:[t^2, t^3, t]$

r1:diff(r,t)$

r2:diff(r1,t)$

r3:diff(r2,t)$

K:norm(cross(r1,r2))/norm(r1)^3$

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$

print("Space curve is r=", r.J)$

print("Curvature is K=", radcan(K))$

print("Torsion is T=", radcan(T))$

print("Curvature at given point is K=", ev(K, t=0))$

print("Torsion at given point is T=", ev(T, t=0))$

𝑆𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = 𝑗𝑡3 + 𝑖𝑡2 + 𝑘𝑡

2√9𝑡4 + 9𝑡2 + 1
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 =

3

(9𝑡4 + 4𝑡2 + 1)2

3
𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 =

9𝑡4 + 9𝑡2 + 1

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐾 = 2

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = 3

Problem 3. Write a program to find the curvature and the torsion of the space curve

𝑡 ̂ 𝜋

Program:

𝑟⃗ = (𝑡 − 𝑠𝑖𝑛(𝑡)) 𝑖̂ + (1 − 𝑐𝑜𝑠(𝑡)) 𝑗 ̂+ 4 𝑠𝑖𝑛 () 𝑘 at any point 𝑡 and at 𝑡 =
2 3

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

cross(x,y):=ev(express(x~y),diff)$

stp(x,y,z):=cross(x,y).z$

J:[i,j,k]$

r:[t-sin(t), 1-cos(t), 4*sin(t/2)]$

r1:diff(r,t)$

r2:diff(r1,t)$

r3:diff(r2,t)$

Page 22 of 42

K:norm(cross(r1,r2))/norm(r1)^3$

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$

print("Space curve is r=", r.J)$

print("Curvature is K=", trigreduce(trigsimp(K)))$

print("Torsion is T=", trigrat(T))$

print("Curvature at given point is K=", ev(K, t=π/3))$

print("Torsion at given point is T=", ev(T, t=π/3))$

Output:

𝑡
𝑆𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = 𝑖(𝑡 − sin(𝑡) + 𝑗(1 − cos(𝑡) + 4𝑘 sin ()

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 =

2

√6 − 2 cos(𝑡)

8
3𝑡 𝑡 cos () − 9 cos ()

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 = − 2 2
8 cos(𝑡) − 24

√5
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐾 =

8

5
32

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = −
40

Problem 4. Write a program to find the curvature and the torsion of the space curve

𝑟 = 𝑎 𝑐𝑜𝑠(𝑡) 𝑖̂ + 𝑎 𝑠𝑖𝑛(𝑡) 𝑗̂ + 𝑏𝑡 𝑘̂ at any point 𝑡.
Program:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

cross(x,y):=ev(express(x~y),diff)$

stp(x,y,z):=cross(x,y).z$

J:[i,j,k]$

r:[a*cos(t), a*sin(t), b*t]$

r1:diff(r,t)$

r2:diff(r1,t)$

r3:diff(r2,t)$

K:norm(cross(r1,r2))/norm(r1)^3$

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$

print("Space curve is r=", r.J)$

Page 23 of 42

Output:

print("Curvature is K=", radcan(trigsimp(K)))$

print("Torsion is T=", trigsimp(T))$

𝑆𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = 𝑎𝑗 sin(𝑡) + 𝑎𝑖 cos(𝑡) + 𝑏𝑘𝑡

𝑎
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 =

𝑏2 + 𝑎2

𝑏
𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 =

𝑏2 + 𝑎2

Problem 5. Write a program to find the curvature and the torsion of the space curve

𝑟 = 3 𝑐𝑜𝑠(𝑡) 𝑖̂ + 3 𝑠𝑖𝑛(𝑡) 𝑗̂ + 4𝑡 𝑘̂ at any point 𝑡.
Program:

Output:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

cross(x,y):=ev(express(x~y),diff)$

stp(x,y,z):=cross(x,y).z$

J:[i,j,k]$

r:[3*cos(t), 3*sin(t), 4*t]$

r1:diff(r,t)$

r2:diff(r1,t)$

r3:diff(r2,t)$

K:norm(cross(r1,r2))/norm(r1)^3$

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$

print("Space curve is r=", r.J)$

print("Curvature is K=", trigsimp(K))$

print("Torsion is T=", trigsimp(T))$

𝐺𝑖𝑣𝑒𝑛 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = 3𝑗 sin(𝑡) + 3𝑖 cos(𝑡) + 4𝑘𝑡

3
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 =

25

4
𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 =

25

Page 24 of 42

Exercise:

Write a program to find the curvature and the torsion of a space curve 𝑟⃗ at the given point 𝑡:

1. 𝑟 = 𝑎𝑡 𝑖̂ + 𝑏𝑡2 𝑗̂ + 𝑐𝑡3𝑘̂ at any point 𝑡

2. 𝑟⃗ = (𝑡 −
𝑡3

3
) 𝑖̂ + 𝑡2 𝑗 ̂+ (

𝑡3

3
+ 𝑡) 𝑘̂ at any point 𝑡

3. 𝑟 = 𝑐𝑜𝑠𝑡 𝑖̂ + 𝑠𝑖𝑛𝑡 𝑗̂ + 𝑡2𝑘̂ at any point 𝑡

4. 𝑟 = 𝑎 𝑐𝑜𝑠𝑡 𝑖̂ + 𝑎 𝑠𝑖𝑛𝑡 𝑗̂ + 𝑎 𝑐𝑜𝑡(𝛼) 𝑡 𝑘̂ at any point 𝑡

5. 𝑟⃗ = 𝑎 𝑐𝑜𝑠(𝑡) 𝑖̂ + 𝑎 𝑠𝑖𝑛(𝑡) 𝑗̂ at any point 𝑡

6. 𝑟⃗ = (2𝑡 + 3) 𝑖̂ + (5 − 𝑡2) 𝑗̂ at any point 𝑡

Page 25 of 42

Experiment 4

Program to find the Gradient and the Laplacian of a scalar function and
Divergence and Curl of a vector function.

Aim: To find the Gradient and the Laplacian of a scalar function and Divergence and Curl
of a vector function using Mathematics Softwares (FOSS).

Software: Maxima
Keys:

Key Function
load ("vect") vect is a package of functions for vector analysis.

load ("vect") loads this package
express (expr) Expands differential operator nouns into expressions in terms of

partial derivatives. express recognizes the operators grad, div,
curl, laplacian.

:= To define a function/expression

diff
When diff is present as an evflag in call to ev, all
differentiations indicated in expr are carried out.

grad() gradient operator
div() divergence operator
laplacian() Laplacian operator
curl() curl operator
~ The wedge product operator is denoted by the tilde ~. This is

used to compute cross product of vectors.
trigsimp (expr) Employs Pythagorean identities of trigonometric functions to

simplify expressions.

trigreduce (expr, x) Combines products and powers of trigonometric and hyperbolic
sin’s and cos’s of x into those of multiples of x.

[a_1,…,a_n]; To create a list [a_1,…,a_n]
A[i] [and] also enclose the subscripts of a list. A[i] will be i-th

element of list A
sqrt() square root of argument

print (“text”, expr)$
Displays text within inverted commas and evaluates and
displays expr

radcan(expr) Simplifies expr, which can contain logs, exponentials, and
radicals

/ (Backward Slash) Division
ev (expr, arg_1, …, arg_n) Evaluates the expression expr in the environment specified by

the arguments arg_1, …, arg_n.

Page 26 of 42

Definitions and Formulae:

Scalar Point Function/Scalar Field: If to each point (𝑥, 𝑦, 𝑧) of a region R in space there
corresponds a number or scalar 𝜙(𝑥, 𝑦, 𝑧), then 𝜙 is called a scalar function of position or a
scalar point function we say that a scalar field 𝜙 has been defined in R.

Vector Point Function/ Vector Field: If to each point (𝑥, 𝑦, 𝑧) of a region R in space there
corresponds a vector 𝒇(𝑥, 𝑦, 𝑧), then 𝒇 is called a vector function of position or a vector point
function we say that a scalar field 𝒇 has been defined in R.

Gradient of a scalar field: Let 𝜙(𝑥, 𝑦, 𝑧) be defined and differentiable at each point (𝑥, 𝑦, 𝑧) in a
certain region of space then the gradient of 𝜙, written ∇𝜙 or grad 𝜙, is a vector field defined by

 𝜕 𝜕
∇𝜙 = (𝑖̂ +

𝜕
𝑗̂ + 𝑘̂) 𝜙 =

𝜕𝜙
𝑖̂ +

𝜕𝜙
𝑗̂ +

𝜕𝜙
𝑘̂

𝜕𝑥 𝜕𝑦 𝜕𝑧 𝜕𝑥 𝜕𝑦 𝜕𝑧

Laplacian of a scalar field: Let 𝜙(𝑥, 𝑦, 𝑧) be defined and differentiable at each point (𝑥, 𝑦, 𝑧) in a
certain region of space then the Laplacian of 𝜙, written ∇2𝜙 is a scalar field defined by

∇2𝜙 =

𝜕2𝜙

𝜕𝑥2

𝜕2𝜙
+

𝜕𝑦2

𝜕2𝜙
+

𝜕𝑧2

Divergent of a vector field: Let 𝑓 = 𝑓1 𝑖̂ + 𝑓2 𝑗̂ + 𝑓3 𝑘̂ be defined and differentiable at each point
(𝑥, 𝑦, 𝑧) in a certain region of space then the divergence of 𝑓⃗, written ∇ ∙ 𝑓⃗ or div 𝑓⃗, is a scalar
field defined by

∇ ∙ 𝑓⃗ =
𝜕𝑓1

+
𝜕𝑓2

𝜕𝑓3

+
𝜕𝑥 𝜕𝑦 𝜕𝑧

Curl/ rotation of a vector field: Let 𝑓 = 𝑓1 𝑖̂ + 𝑓2 𝑗̂ + 𝑓3 𝑘̂ be defined and differentiable at each
point (𝑥, 𝑦, 𝑧) in a certain region of space then the curl or rotation of 𝑓⃗, written ∇ × 𝑓⃗ or curl 𝑓⃗

or rot 𝑓⃗ is a vector field defined by

𝑖̂ 𝑗̂ 𝑘̂

∇ × 𝑓⃗ = |
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
|

𝑓1 𝑓2 𝑓3

Page 27 of 42

Program:

Program to find the gradient and Laplacian of a scalar field Φ at a given point (𝑥0, 𝑦0, 𝑧0).

load ("vect")$

J:[i,j,k]$

Φ:given scalar field$

G:ev(express(grad (Φ)),diff)$

L:ev(express(laplacian (Φ)),diff)$

print("Φ=", Φ)$

print("grad(Φ)=", G.J)$

print("laplacian(Φ)=", L)$

print("at given point, grad(Φ)=", ev(G,x=x0,y=y0,z=z0).J)$

print("at given point, laplacian(Φ)=", ev(L, x=x0,y=y0,z=z0))$

Program to find the divergence and curl of a vector field 𝑓 = 𝑓1 𝑖̂ + 𝑓2 𝑗̂ + 𝑓3 𝑘̂ at the given point

(𝑥0, 𝑦0, 𝑧0).

load ("vect")$

J:[i,j,k]$

f:[f1, f2, f3]$

D:ev(express(div(f)),diff)$

C:ev(express(curl(f)),diff)$

print("f=", f.J)$

print("div(f)=", D)$

print("curl(Φ)=",C.J)$

print("at given point, div(Φ)=", ev(D, x=x0,y=y0,z=z0))$

print("at given point, curl(Φ)=", ev(C, x=x0,y=y0,z=z0).J)$

Page 28 of 42

Worked Examples:

Problem 1. Write a program to find the gradient and Laplacian of Φ = 3𝑥2𝑦 − 𝑦3𝑧2 at (1, −2, −1)

Program:

Output:

load ("vect")$

J:[i,j,k]$

Φ:3*x^2*y-y^3*z^2$

G:ev(express(grad (Φ)),diff)$

L:ev(express(laplacian (Φ)),diff)$

print("Φ=", Φ)$

print("grad(Φ)=", G.J)$

print("laplacian(Φ)=", L)$

print("at given point, grad(Φ)=", ev(G,x=1,y=-2,z=-1).J)$

print("at given point, laplacian(Φ)=", ev(L,x=1,y=-2,z=-1))$

Φ = 3𝑥2𝑦 − 𝑦3𝑧2

𝑔𝑟𝑎𝑑(Φ) = 𝑗(3𝑥2 − 3𝑦2𝑧2) − 2𝑘𝑦3𝑧 + 6𝑖𝑥𝑦

𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = −6𝑦𝑧2 − 2𝑦3 + 6𝑦

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑔𝑟𝑎𝑑(Φ) = −16𝑘 − 9𝑗 − 12𝑖

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = 16

Problem 2. Write a program to find the gradient and Laplacian of Φ = 𝑥2𝑦𝑧 at (1, −2,1)

Program:

Output:

load ("vect")$

J:[i,j,k]$

Φ:x^2*y*z$

G:ev(express(grad (Φ)),diff)$

L:ev(express(laplacian (Φ)),diff)$

print("Φ=", Φ)$

print("grad(Φ)=", G.J)$

print("laplacian(Φ)=", L)$

print("at given point, grad(Φ)=", ev(G,x=1,y=-2,z=1).J)$

print("at given point, laplacian(Φ)=", ev(L,x=1,y=-2,z=1))$

Φ = 𝑥2𝑦𝑧

Page 29 of 42

𝑔𝑟𝑎𝑑(Φ) = 2𝑖𝑥𝑦𝑧 + 𝑗𝑥2𝑧 + 𝑘𝑥2𝑦

𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = 2𝑦𝑧

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑔𝑟𝑎𝑑(Φ) = −2𝑘 + 𝑗 − 4𝑖

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = −4

Problem 3. Write a program to find the gradient and Laplacian of Φ = 2𝑥𝑦 + 5𝑦𝑧 + 𝑧𝑥 at (1,2,3)

Program:

Output:

load ("vect")$

J:[i,j,k]$

Φ:2*x*y+5*y*z+z*x$

G:ev(express(grad (Φ)),diff)$

L:ev(express(laplacian (Φ)),diff)$

print("Φ=", Φ)$

print("grad(Φ)=", G.J)$

print("laplacian(Φ)=", L)$

print("at given point, grad(Φ)=", ev(G,x=1,y=2,z=3).J)$

print("at given point, laplacian(Φ)=", ev(L,x=1,y=2,z=3))$

Φ = 5𝑦𝑧 + 𝑥𝑧 + 2𝑥𝑦

𝑔𝑟𝑎𝑑(Φ) = 𝑗(5𝑧 + 2𝑥) + 𝑖(𝑧 + 2𝑦) + 𝑘(5𝑦 + 𝑥)

𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = 0

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑔𝑟𝑎𝑑(Φ) = 11𝑘 + 17𝑗 + 7𝑖

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = 0

Problem 4. Write a program to find divergence and curl of 𝑓 = 𝑥2𝑧 𝑖̂ − 2𝑦3𝑧2 𝑗̂ + 𝑥𝑦2𝑧 𝑘̂ at (1, −1,1)

Program:

load ("vect")$

J:[i,j,k]$

f:[x^2*z,-2*y^3*z^2, x*y^2*z]$

D:ev(express(div(f)),diff)$

C:ev(express(curl(f)),diff)$

print("f=", f.J)$

print("div(f)=", D)$

print("curl(f)=",C.J)$

Page 30 of 42

Output:

print("at given point, div(f)=", ev(D,x=1,y=-1,z=1))$

print("at given point, curl(f)=", ev(C,x=1,y=-1,z=1).J)$

𝑓 = −2𝑗𝑦3𝑧2 + 𝑘𝑥𝑦2𝑧 + 𝑖𝑥2𝑧

𝑑𝑖𝑣(𝑓) = −6𝑦2𝑧2 + 2𝑥𝑧 + 𝑥𝑦2

𝑐𝑢𝑟𝑙(𝑓) = 𝑖(4𝑦3𝑧 + 2𝑥𝑦𝑧) + 𝑗(𝑥2 − 𝑦2𝑧)

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑑𝑖𝑣(𝑓) = −3

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑐𝑢𝑟𝑙(𝑓) = −6𝑖

Problem 5. Write a program to find divergence and curl of 𝑓 = 𝑥𝑧3 𝑖̂ − 2𝑥2𝑦𝑧 𝑗̂ + 2𝑦𝑧4 𝑘̂ at (1, −1,1)

Program:

Output:

load ("vect")$

J:[i,j,k]$

f:[x*z^3, -2*x^2*y*z, 2*y*z^4]$

D:ev(express(div(f)),diff)$

C:ev(express(curl(f)),diff)$

print("f=", f.J)$

print("div(f)=", D)$

print("curl(f)=",C.J)$

print("at given point, div(f)=", ev(D,x=1,y=-1,z=1))$

print("at given point, curl(f)=", ev(C,x=1,y=-1,z=1).J)$

𝑓 = 2𝑘𝑦𝑧4 + 𝑖𝑥𝑧3 − 2𝑗𝑥2𝑦𝑧

𝑑𝑖𝑣(𝑓) = 8𝑦𝑧3 + 𝑧3 − 2𝑥2𝑧

𝑐𝑢𝑟𝑙(𝑓) = 𝑖(2𝑧4 + 2𝑥2𝑦) + 3𝑗𝑥𝑧2 − 4𝑘𝑥𝑦𝑧

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑑𝑖𝑣(𝑓) = −9

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑐𝑢𝑟𝑙(𝑓) = 4𝑘 + 3𝑗

Problem 6. Write a program to find divergence and curl of 𝑔𝑟𝑎𝑑(Φ) where Φ = 𝑥3 + 𝑦3 − 3𝑥𝑦𝑧

Program:

load ("vect")$

J:[i,j,k]$

Φ:x^3+y^3+z^3-3*x*y*z$

G:ev(express(grad (Φ)),diff)$

D:ev(express(div(G)),diff)$

Page 31 of 42

Output:

C:ev(express(curl(G)),diff)$

print("Φ=", Φ)$

print("grad(Φ)=", G.J)$

print("div(grad(Φ))=", D)$

print("curl(grad(Φ))=",C.J)$

Φ = 𝑧3 − 3𝑥𝑦𝑧 + 𝑦3 + 𝑥3

𝑔𝑟𝑎𝑑(Φ) = 𝑘(3𝑧2 − 3𝑥𝑦) + 𝑖(3𝑥2 − 3𝑦𝑧) + 𝑗(3𝑦2 − 3𝑥𝑧)

𝑑𝑖𝑣(𝑔𝑟𝑎𝑑(Φ)) = 6𝑧 + 6𝑦 + 6𝑥

𝑐𝑢𝑟𝑙(𝑔𝑟𝑎𝑑(Φ)) = 0

Problem 7. Write a program to find 𝑑𝑖𝑣 (𝑐𝑢𝑟𝑙(𝑓⃗)) and 𝑐𝑢𝑟𝑙 (𝑐𝑢𝑟𝑙(𝑓⃗)) at (2,1,1) where

𝑓 = 𝑥2𝑦𝑧 𝑖̂ + 𝑥𝑦𝑧2 𝑗̂ + 𝑦2𝑧 𝑘̂

Program:

Output:

load ("vect")$

J:[i,j,k]$

f:[x^2*y*z, x*y*z^2, y^2*z]$

C:ev(express(curl(f)),diff)$

D:ev(express(div(C)),diff)$

CC:ev(express(curl(C)),diff)$

print("f=", f.J)$

print("curl(f)=",C.J)$

print("div(curl(f))=", D)$

print("curl(curl(f))=",CC.J)$

print("at given point, div(curl(f))=", ev(D,x=2,y=1,z=1))$

print("at given point, curl(curl(f))=", ev(CC,x=2,y=1,z=1).J)$

𝑓 = 𝑗𝑥𝑦𝑧2 + 𝑘𝑦2𝑧 + 𝑖𝑥2𝑦𝑧

𝑐𝑢𝑟𝑙(𝑓) = 𝑘(𝑦𝑧2 − 𝑥2𝑧) + 𝑖(2𝑦𝑧 − 2𝑥𝑦𝑧) + 𝑗𝑥2𝑦

𝑑𝑖𝑣(𝑐𝑢𝑟𝑙(𝑓)) = 0

𝑐𝑢𝑟𝑙(𝑐𝑢𝑟𝑙(𝑓)) = 𝑖𝑧2 + 𝑘(2𝑥𝑧 − 2𝑧 + 2𝑥𝑦) + 𝑗(2𝑥𝑧 − 2𝑥𝑦 + 2𝑦)

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑑𝑖𝑣(𝑐𝑢𝑟𝑙(𝑓)) = 0

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑐𝑢𝑟𝑙(𝑐𝑢𝑟𝑙(𝑓)) = 6𝑘 + 2𝑗 + 𝑖

Page 32 of 42

Exercise:

I. Write a program to find the gradient and Laplacian of the following scalar fields Φ at

the given point:

1. Φ = 𝑥2𝑦2𝑧4 at (3, 1, −2)

2. Φ = 𝑥3 + 𝑦3 + 3𝑥𝑦𝑧 at (1, 2, −1)

3. Φ = 𝑥2𝑦𝑧 + 4𝑥𝑧2 at (1, − 2, −1)

4. Φ = 𝑥𝑦2 + 𝑦𝑧3 at (2, − 1, 1)

II. Write a program to find the divergence and curl of the following vector fields 𝑓⃗ at the

given point:

1. 𝑓 = (𝑥 + 𝑦 + 1)𝑖̂ + 𝑗̂ − (𝑥 + 𝑦)𝑘̂ at (2,1, −1)

2. 𝑓 = 𝑥2𝑦 𝑖̂ + 𝑦𝑧3𝑗̂ − 𝑧𝑥3𝑘̂ at (1,1,1)

3. 𝑓⃗ = 𝑔𝑟𝑎𝑑(Φ) where Φ = 2𝑥3𝑦2𝑧4 at (−1, 2, −3)

4. 𝑓⃗ = 𝑔𝑟𝑎𝑑(Φ) where Φ = 𝑥4 − 6𝑥2𝑦2 + 𝑦4 at (1, 2,3)

III. Write a program to find the 𝑑𝑖𝑣 (𝑐𝑢𝑟𝑙(𝑓⃗)) and 𝑐𝑢𝑟𝑙 (𝑐𝑢𝑟𝑙(𝑓⃗)) of the following

vector fields 𝑓⃗ at the given point:

1. 𝑓 = 2𝑥2𝑧 𝑖̂ − 𝑥𝑦2𝑧 𝑗̂ + 3𝑦𝑧2 𝑘̂ at (1,1,2)

2. 𝑓 = 𝑥2𝑦 𝑖̂ + 𝑦2𝑧 𝑗̂ + 𝑧2𝑥 𝑘̂ at (−2,1,1)

Page 33 of 42

Experiment 5
Program to demonstrate the physical interpretation of

Gradient, Divergence and Curl.

Aim: To demonstrate physical interpretations of Gradient, Divergence and Curl like
directional derivative, unit normal, solenoidal, irrotational using Mathematics
Softwares (FOSS).

Software: Maxima
Keys:

Key Function
load ("vect") vect is a package of functions for vector analysis.

load ("vect") loads this package
express (expr) Expands differential operator nouns into expressions in terms of

partial derivatives. express recognizes the operators grad, div,
curl, laplacian.

:= To define a function/expression

diff
When diff is present as an evflag in call to ev, all differentiations
indicated in expr are carried out.

grad() gradient operator
div() divergence operator
laplacian() Laplacian operator
curl() curl operator
~ The wedge product operator is denoted by the tilde ~. This is

used to compute cross product of vectors.
trigsimp (expr) Employs Pythagorean identities of trigonometric functions to simplify

expressions.

trigreduce (expr, x) Combines products and powers of trigonometric and hyperbolic
sin’s and cos’s of x into those of multiples of x.

* (asterik) Commutative Multiplication
. (dot) Noncommutative multiplication and scalar product

coeff (expr, x)
Returns the coefficient of x in expr, where expr is a polynomial
or a monomial term in x.

apply(‘matrix, nested lists) Converts nested lists of same length into a matrix
[a_1,…,a_n]; To create a list [a_1,…,a_n]
A[i] [and] also enclose the subscripts of a list. A[i] will be i-th

element of list A
sqrt() square root of argument

diff (expr, x)
Returns the first partial derivative of expr with respect to the
variable x.

/ (Backward Slash) Division
acos() arc cos or cos-1 function

Page 34 of 42

Definitions and Formulae:

Level Surfaces: If Φ(𝑥, 𝑦, 𝑧) is a scalar point function, then Φ(𝑥, 𝑦, 𝑧) = 𝐶, where 𝐶 is a constant
is called a level surface of the function Φ(𝑥, 𝑦, 𝑧). At every point on the level surface, the
function Φ(𝑥, 𝑦, 𝑧) takes a constant value 𝐶.

Physical Interpretation of Gradient:

a) Directional Derivative: The component of 𝑔𝑟𝑎𝑑(Φ) of a scalar field Φ in the direction of
𝑎⃗ is given by 𝑔𝑟𝑎𝑑(Φ) ∙ 𝑎̂ and is called the directional derivative of Φ in the direction of 𝑎⃗.
Here 𝑎̂ is the unit vector in the direction of 𝑎⃗. Physically, this is the rate of change of Φ at
(𝑥, 𝑦, 𝑧) in the direction of 𝑎⃗.

b) Unit normal: The 𝑔𝑟𝑎𝑑(Φ) is a vector normal to the level surface Φ = 𝐶 and 𝑛̂ =
𝑔𝑟𝑎𝑑(Φ)

|𝑔𝑟𝑎𝑑(Φ) |

is the unit normal vector to the surface Φ = 𝐶 at any point (𝑥, 𝑦, 𝑧).

c) Angle between surfaces: Angle between two surfaces is the angle between their normals at
the common point. At the common point (x0, y0, z0), angle between Φ = 𝐶1 and ψ = 𝐶2 is
given by 𝜃 = 𝑐𝑜𝑠−1 (

 𝑔𝑟𝑎𝑑(Φ) ∙𝑔𝑟𝑎𝑑(ψ)
) evaluated at (x0, y0, z0).

|𝑔𝑟𝑎𝑑(Φ)|∙|𝑔𝑟𝑎𝑑(ψ)|

Physical Interpretation of Divergent: If 𝑓⃗ represents the velocity of a fluid then 𝑑𝑖𝑣(𝑓⃗) represents
the rate at which the fluid is decreasing per unit volume. A vector point function 𝑓⃗ is said to
be solenoidal if 𝑑𝑖𝑣(𝑓⃗) = 0.

Physical Interpretation of Curl: If 𝑓⃗ represents the velocity of a body rotating about a fixed point
then 𝑐𝑢𝑟𝑙(𝑓⃗) represents twice the angular velocity. A vector point function 𝑓⃗ is said to be
irrotational if 𝑐𝑢𝑟𝑙(𝑓⃗) = 0.

Program:
Program to find the directional derivative of Φ in the direction of 𝑎⃗ = 𝑎1 𝑖̂ + 𝑎2 𝑗̂ + 𝑎3 𝑘̂ at the

given point (𝑥0, 𝑦0, 𝑧0).
load ("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

Φ:given scalar field$

a:[a1, a2, a3]$

G:ev(express(grad (Φ)),diff)$

DD:G.a/norm(a)$

print("Φ=", Φ)$

print("a=", a.J)$

print("grad(Φ)=", G.J)$

print("Directional Derivative of Φ=", radcan(DD))$

print("at the given point, Directional Derivative of Φ=", ev(DD,x=x0,y=y0,z=z0))$

Page 35 of 42

Program to find the unit normal to the surface Φ = C at the given point (𝑥0, 𝑦0, 𝑧0).

load ("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

Φ:given scalar field (i.e., LHS of Φ=C)$

G:ev(express(grad (Φ)),diff)$

n:radcan(G/norm(G))$

print("Φ=", Φ)$

print("grad(Φ)=", G.J)$

print("Unit Normal to Φ=", expand(n.J))$

print("at the given point, Unit Normal to Φ=", ev(n, x=x0,y=y0,z=z0).J)$

Program to find the angle between surfaces Φ = C1 and Ψ=C2 at the common point (𝑥0, 𝑦0, 𝑧0).

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

Φ: given scalar field (i.e., LHS of Φ=C1)$

Ψ: given scalar field (i.e., LHS of Ψ=C2)$

G1:ev(express(grad (Φ)),diff)$

G2:ev(express(grad (Ψ)),diff)$

θ:acos(G1.G2/(norm(G1)*norm(G2)))$

print("Φ=", Φ)$

print("Ψ=", Ψ)$

print("Angle between Φ and Ψ is θ=", ev(θ, x=x0,y=y0,z=z0))$

Program to test whether given vector field 𝑓 = 𝑓1 𝑖̂ + 𝑓2 𝑗̂ + 𝑓3 𝑘̂ is solenoidal/irrotational or not.

load ("vect")$

J:[i,j,k]$

f:[f1,f2, f3]$

D:ev(express(div(f)),diff)$

C:ev(express(curl(f)),diff)$

print("f=", f.J)$

print("div(f)=", D)$

print("curl(f)=",C.J)$

Page 36 of 42

if D=0 then print("Given Vector field is solenoidal")

else print("Given Vector field is not solenoidal")$

if C.J=0 then print("Given Vector field is irrotational")

else print("Given Vector field is not irrotational")$

Worked Examples:

Problem 1. Write a program to find the directional derivative of Φ = 𝑥2𝑦𝑧 + 4𝑥𝑧2 in the direction

of 𝑎⃗ = 2 𝑖̂ − 𝑗̂ − 2𝑘̂ at the given point (1, −2, −1).

Program:

Output:

load ("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

Φ:x^2*y*z+4*x*z^2$

a:[2,-1,-2]$

G:ev(express(grad (Φ)),diff)$

DD:G.a/norm(a)$

print("Φ=", Φ)$

print("a=", a.J)$

print("grad(Φ)=", G.J)$

print("Directional Derivative of Φ=", radcan(DD))$

print("at the given point, Directional Derivative of Φ=", ev(DD,x=1,y=-2,z=-1))$

Φ = 4𝑥𝑧2 + 𝑥2𝑦𝑧

𝑎 = −2𝑘 − 𝑗 + 2𝑖

𝑔𝑟𝑎𝑑(Φ) = 𝑖(4𝑧2 + 2𝑥𝑦𝑧) + 𝑘(8𝑥𝑧 + 𝑥2𝑦) + 𝑗𝑥2𝑧

8𝑧2 + (4𝑥𝑦 − 𝑥2 − 16𝑥)𝑧 − 2𝑥2𝑦
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 Φ =

3

37
𝑎𝑡 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 Φ =

3

Problem 2. Write a program to find the directional derivative of Φ = 2𝑥𝑦 + 5𝑦𝑧 + 𝑧𝑥 in the

direction of 𝑎⃗ = 3 𝑖̂ − 5𝑗̂ + 4𝑘̂ at the given point (1,2,3).

Page 37 of 42

Program:

Output:

load ("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

Φ:2*x*y+5*y*z+z*x$

a:[3,-5,4]$

G:ev(express(grad (Φ)),diff)$

DD:G.a/norm(a)$

print("Φ=", Φ)$

print("a=", a.J)$

print("grad(Φ)=", G.J)$

print("Directional Derivative of Φ=", radcan(DD))$

print("at the given point, Directional Derivative of Φ=", ev(DD,x=1,y=2,z=3))$

Φ = 5𝑦𝑧 + 𝑥𝑧 + 2𝑥𝑦

𝑎 = 4𝑘 − 5𝑗 + 3𝑖

𝑔𝑟𝑎𝑑(Φ) = 𝑗(5𝑧 + 2𝑥) + 𝑖(𝑧 + 2𝑦) + 𝑘(5𝑦 + 𝑥)

22𝑧 − 26𝑦 + 6𝑥
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 Φ = −

5√2
3

𝑎𝑡 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 Φ = −22

Problem 3. Write a program to find the unit normal to the surface 𝑥𝑦3𝑧2 = 4 at (−1, −1,2).

Program:

load ("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

J:[i,j,k]$

Φ:x*y^3*z^2$

G:ev(express(grad (Φ)),diff)$

n:radcan(G/norm(G))$

print("Φ=", Φ)$

print("grad(Φ)=", G.J)$

print("Unit Normal of Φ=", expand(n.J))$

print("at the given point, Unit Normal of Φ=", ev(n,x=-1,y=-1,z=2).J)$

Page 38 of 42

Output:

Φ = 𝑥𝑦3𝑧2

𝑔𝑟𝑎𝑑(Φ) = 𝑖𝑦3𝑧2 + 3𝑗𝑥𝑦2𝑧2 + 2𝑘𝑥𝑦3𝑧

𝑖𝑦𝑧

3𝑗𝑥𝑧

2𝑘𝑥𝑦
𝑈𝑛𝑖𝑡 𝑁𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 Φ = + +

√𝑦2𝑧2 + 9𝑥2𝑧2 + 4𝑥2𝑦2 √𝑦2𝑧2 + 9𝑥2𝑧2 + 4𝑥2𝑦2 √𝑦2𝑧2 + 9𝑥2𝑧2 + 4𝑥2𝑦2

𝑘 3𝑗 𝑖
𝑎𝑡 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑈𝑛𝑖𝑡 𝑁𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 Φ = − −

√11 √11 √11

Problem 4. Write a program to find the angle between surfaces 𝑥2 − 2𝑦2 + 4𝑧2 = 3 and 𝑥𝑦𝑧2 = 1

at the common point (1,1, −1).
Program:

Output:

load("vect")$

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$

Φ:x^2-2*y^2+4*z^2$

Ψ:x*y*z^2$

G1:ev(express(grad (Φ)),diff)$

G2:ev(express(grad (Ψ)),diff)$

θ:acos(G1.G2/(norm(G1)*norm(G2)))$

print("Φ=", Φ)$

print("Ψ=", Ψ)$

print("Angle between Φ and Ψ is θ=", ev(θ,x=1, y=1, z=-1))$

Φ = 4𝑧2 − 2𝑦2 + 𝑥2

Ψ = 𝑥𝑦𝑧2

7
𝐴𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 Φ 𝑎𝑛𝑑 Ψ 𝑖𝑠 𝜃 = acos ()

√6√21

Page 39 of 42

Problem 5. Write a program to test whether 𝑓 = (𝑥 + 2𝑦 + 4𝑧) 𝑖̂ + (2𝑥 − 3𝑦 − 𝑧) 𝑗̂ + (4𝑥 − 𝑦 + 2𝑧)𝑘̂

is solenoidal/irrotational or not
Program:

Output:

load ("vect")$

J:[i,j,k]$

f:[x+2*y+4*z,2*x-3*y-z, 4*x-y+2*z]$

D:ev(express(div(f)),diff)$

C:ev(express(curl(f)),diff)$

print("f=", f.J)$

print("div(f)=", D)$

print("curl(f)=",C.J)$

if D=0 then print("Given Vector field is solenoidal")

else print("Given Vector field is not solenoidal")$

if C.J=0 then print("Given Vector field is irrotational")

else print("Given Vector field is not irrotational")$

𝑓 = 𝑖(4𝑧 + 2𝑦 + 𝑥) + 𝑘(2𝑧 − 𝑦 + 4𝑥) + 𝑗(−𝑧 − 3𝑦 + 2𝑥)

𝑑𝑖𝑣(𝑓) = 0

𝑐𝑢𝑟𝑙(𝑓) = 0

𝐺𝑖𝑣𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙

𝐺𝑖𝑣𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

Problem 6. Write a program to test whether 𝑓⃗ = (𝑥2 + 𝑥𝑦2) 𝑖̂ + (𝑦2 + 𝑥2𝑦) 𝑗̂ is solenoidal/irrotational or not
Program:

load ("vect")$

J:[i,j,k]$

f:[x^2+x*y^2,y^2+x^2*y, 0]$

D:ev(express(div(f)),diff)$

C:ev(express(curl(f)),diff)$

print("f=", f.J)$

print("div(f)=", D)$

print("curl(f)=",C.J)$

if D=0 then print("Given Vector field is solenoidal")

else print("Given Vector field is not solenoidal")$

if C.J=0 then print("Given Vector field is irrotational")

else print("Given Vector field is not irrotational")$

Page 40 of 42

Output:

𝑓 = 𝑖(𝑥𝑦2 + 𝑥2) + 𝑗(𝑦2 + 𝑥2𝑦)

𝑑𝑖𝑣(𝑓) = 𝑦2 + 2𝑦 + 𝑥2 + 2𝑥

𝑐𝑢𝑟𝑙(𝑓) = 0

𝐺𝑖𝑣𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙

𝐺𝑖𝑣𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

Exercise:

I. Write a program to find the directional derivative of Φ in the direction of 𝑎⃗ at the given

point (𝑥0, 𝑦0, 𝑧0).

1. Φ = 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦, 𝑎⃗ = 3𝑖 + 4𝑗 + 5𝑘 at (1, 2, 3) (Ans: 23√2)
5

2. Φ = 𝑥3 + 𝑦3 + 𝑧3, 𝑎⃗ = 𝑖 + 2𝑗 + 𝑘 at (1, −1, 2) (Ans: 21)
√6

II. Write a program to find the unit normal to the surface Φ = C at the given point (𝑥0, 𝑦0, 𝑧0).

1. 𝑥3 + 𝑦3 + 3𝑥𝑦𝑧 = 3 at (1, 2, −1) (Ans: 2𝑘
√14

+
3𝑗

√14
−

𝑖
)

√14

2. 𝑥2𝑦2𝑧2 = 4 at (−1, − 1, 2)) (Ans: 𝑘 −
2𝑗

−
2𝑖

)
3 3 3

III. Write a program to find the angle between surfaces Φ = C1 and Ψ=C2 at the common

point (𝑥0, 𝑦0, 𝑧0).

1. 𝑥2 + 𝑦2 + 𝑧2 = 9 and 𝑥2 + 𝑦2 − 𝑧 = 3 at (2, −1, 2) (Ans: acos (
8

))
3√21

2. 𝑥 log(𝑧) − 𝑦2 = −1 and 𝑥2𝑦 + 𝑧 = 2 at (1, 1, 1) (Ans: 𝜋 − acos (
1

))
√5√6

IV. Write a program to test whether given vector field ⃗f is solenoidal/irrotational or not.

1. 𝑓 = (3𝑥 + 3𝑦 + 4𝑧)𝑖̂ + (𝑥 − 2𝑦 + 3𝑧) 𝑗̂ + (3𝑥 + 2𝑦 − 𝑧) 𝑘̂

2. 𝑓 = (𝑥 + 3𝑦)𝑖̂ + (𝑦 − 3𝑧) 𝑗̂ + (𝑥 − 2𝑧) 𝑘̂

3. 𝑓 = (sin(y) + 𝑧)𝑖̂ + (𝑥 𝑐𝑜𝑠(𝑦) − 𝑧) 𝑗̂ + (𝑥 − 𝑦) 𝑘̂

4. 𝑓 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂

5. 𝑓 = 3𝑦4𝑧2 𝑖̂ + 4𝑥3𝑧2 𝑗̂ − 3𝑥2𝑦2 𝑘̂

Page 41 of 42

Experiment 6
Program 6: Program to evaluate vector line integral

Aim: To find ∫𝑐𝐹⃗. 𝑑𝑟 which is work done in moving a particle in a force field where 𝐹⃗ = 2𝑥𝑦𝑖 − 3𝑥𝑗 − 5𝑧𝑘, 𝑐

is the curve 𝑥 = 𝑡, 𝑦 =t2+1 , 𝑧 = 2t2 from 𝑡 = 0 to 𝑡 = 1.

Software used: Maxima.

Definition:

Line integral: Let 𝐹⃗ = 𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘 be a vector point function in a region 𝑅 and 𝑐 is a regular curve from

the point A to point B the line integral of 𝐹⃗ is defined as

1. The line integral (1) gives the total work done by force 𝐹⃗ along A to B.

2. If 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡) are parametric equations of curve 𝑐 ,then

3. If 𝑐 is a closed curve then ∮ 𝐹⃗ ∙ 𝑑𝑟 is called the circulation of 𝐹⃗ around

𝑐. If ∮ 𝐹⃗ ∙ 𝑑𝑟 = 0 is irrotational vector

Conclusion:

Work done in moving a particle in a force field is

Find the work done in moving a particle in a force field given by 𝐹⃗ = 2𝑥𝑦𝑖 − 3𝑥𝑗 − 5𝑧𝑘 along the curve 𝑐

given by 𝑥 = 𝑡, 𝑦 =t2+1 , 𝑧 = 2t2 from 𝑡 = 0 to 𝑡 = 1

PROGRAM:

Page 42 of 42

OUTPUT:

Page 43 of 42

Experiment 7

Program 7: Program to evaluate the surface integral.

Aim: To evaluate ∬𝑆 𝐹⃗ ∙ 𝑛 ̂𝑑𝑠 where 𝑆 is the surface 2𝑥 + 2𝑦 + 𝑧 = 6 and 𝐹⃗ = 𝑥𝑦𝑖 − 𝑥2𝑗 + (𝑥 + 𝑧)𝑘.

Software used: maxima

Definition:

Surface integral:

An integral which is evaluated over the surface S is called the surface integral.

Let 𝐹⃗ = 𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘 be a vector point function and S is any surface in 3D-space then the surface

integral is defined as ∬𝑆 𝐹⃗ ∙ 𝑛 ̂𝑑𝑠 where 𝑛 ̂is the unit

normal vector to surface

1. If 𝑅 is the projection of surface 𝑆 on 𝑥𝑦-plane then

 where 𝑑𝑠 = 𝑑𝑥𝑑𝑦

2. If 𝑅1 is the projection of 𝑆 on 𝑦𝑧- plane then

3. If 𝑅2 is the projection of 𝑆 on 𝑥𝑧-plane then

Conclusion:

 Evaluate ∬𝑆 𝐹⃗ ∙ 𝑛 ̂𝑑𝑠 where 𝑆 is the surface of the cylinder 2𝑥 + 2𝑦 + 𝑧 = 6 included in the first octant and 𝐹⃗ = 𝑥𝑦𝑖

− 𝑥2𝑗 + (𝑥 + 𝑧)𝑘.
PROGRAM:

Page 44 of 42

 OUTPUT:

Page 45 of 42

𝑣

 Experiment 8

Program 8: Program to evaluate the volume integral.
Aim: To evaluate ∭𝑣𝛻 ⋅ 𝐹⃗ 𝑑𝑉 where 𝐹⃗ = (2𝑟2 − 3𝑧)𝑖 − 2𝑥𝑦𝑗 − 4𝑥𝑘 where 𝑉 is the closed region bounded by 𝑥 = 0 𝑦

= 0 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4

Software used: Maxima

Definition:

Volume integral:

Let 𝐹⃗ = 𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘 be a vector point and 𝑉 be the volume. The volume integration of 𝐹⃗ over V

is defined as

 ∭𝑉 𝐹⃗𝑑𝑉 = ∭𝑉(𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘)𝑑𝑥𝑑𝑦𝑑𝑧

The volume integral is also given by∭𝑉 𝑑𝑖𝑣 𝐹⃗ 𝑑𝑉

Conclusion:

If 𝐹⃗ = (2𝑟2 − 3𝑧)𝑖 − 2𝑥𝑦𝑗 − 4𝑥𝑘 evaluate ∭𝑣𝛻 ⋅ 𝐹⃗ 𝑑𝑉 where 𝑉 is the closed region bounded by the planes

𝑥 = 0 𝑦 = 0 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4

PROGRAM:

If 𝐹⃗ = (2𝑟2 − 3𝑧)𝑖 − 2𝑥𝑦𝑗 − 4𝑥𝑘 evaluate ∭ 𝛻 ⋅ 𝐹⃗ 𝑑𝑉 where 𝑉 is the closed region bounded by the planes 𝑥
= 0 𝑦 = 0 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4

Page 46 of 42

OUTPUT:

Page 47 of 42

Experiment 10
Program 9: Program to verify Green’s theorem .

Aim: To verify Greens theorem for ∮(𝑥𝑦 + 𝑦2)𝑑𝑥 + 𝑥2𝑑𝑦 where 𝑐 is the closed curve bounded by 𝑦 =

𝑥 and 𝑦 = 𝑥2.

Software used: Maxima

Green’s theorem in the plane:
Statement: If 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) be two continuous function having continuous partial derivatives in a region 𝑅 of the 𝑥𝑦-
plane bounded by a simply closed curve 𝑐 then

ර 𝑃𝑑𝑥 + 𝑄𝑑𝑦
஼

= ඵ ൬
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
൰

ோ

𝑑𝑥𝑑𝑦

1. Green’s theorem givens a relation between the plane surface integral and the line integral.

2. The Green’s theorem in vector form is given by

∮ 𝐹⃗ ∙ 𝑑𝑟 = ∬(∇ × 𝐹⃗) ∙ 𝑘 𝑑𝑠
𝑐 𝑅

3. Let 𝐹⃗ = 𝑃𝑖 + 𝑄𝑗 be irrotational in the region 𝑅 of the 𝑥𝑦-plane then

𝐶𝑢𝑟𝑙 𝐹 = ∇ × 𝐹⃗ = 0 ⟹ ∮𝐶 𝐹⃗
 ∙ 𝑑𝑟 = 0

⟹The work done by the force 𝐹⃗ in displaying a particle around the closed curve 𝐶 is zero.

⟹ 𝐹⃗ is conservative.

4. Suppose 𝐹⃗ is conservative force in the 𝑥𝑦-plane then there exists a scalar point function 𝜙 such

that 𝐹⃗ =∇𝜙

⟹ ∇ × 𝐹⃗ = ∇ × ∇𝜙 = 0

⟹ ∮𝐶 𝐹⃗
 ∙ 𝑑𝑟 = 0

Conversely if ∮𝐶 𝐹⃗
 ∙ 𝑑𝑟 = 0 then 𝐹⃗ is conservative .

Thus in the 𝑥𝑦-plane the circulation of 𝐹⃗ around a closed path vanishes if and only if 𝐹⃗ is a

conservative force.

Conclusion: Green’s theorem is verified a given plane and a closed curve.

Verify Greens theorem for ∮(𝑥𝑦 + 𝑦2)𝑑𝑥 + 𝑥2𝑑𝑦 where 𝑐 is the closed curve bounded by 𝑦 = 𝑥 and 𝑦 =

𝑥2.

Page 48 of 42

OUTPUT:

Page 49 of 42

Page 50 of 42

Experiment 10
Program10: Program to find equations of sphere, cone and cylinder
Aim: Program to find equations of sphere, cone and cylinder.

Software used: Maxima

Sphere:

 A sphere is the locus of a point which moves so that its distance from a fixed point always remains

constant. The fixed point is called the center of the sphere and the constant distance is called radius of the

sphere.

Equation of the sphere whose center is (𝑎, 𝑏, 𝑐) and radius 𝑟 is given by

 (𝑥 − 𝑎)2 + (𝑦 − 6)2 + (𝑧 − 𝑐)2 = 𝑟2

Equations of the sphere whose center is origin and radius 𝑟 is given by

 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

The equation 𝑥2 + 𝑦2 + 𝑧2 + 2𝑢𝑥 + 2𝑣𝑦 + 2𝑤𝑧 + 𝑑 = 0 represents a sphere whose center is (−𝑢, −𝑣,

−𝑤) and radius = √𝑢2 + 𝑣2 + 𝑤2 − 𝑑

 Condition for a sphere:
The given equation represents a sphere if

1. It is a second degree equation in 𝑥, 𝑦, 𝑧

2. Co-efficient 𝑥2= co-efficient of 𝑦2= co-efficient of 𝑧2

3. It does not contain the terms involving the products 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥

Cone:

A cone is a solid whose surface is generated by a line passing through a fixed point and a fixed plane

curve not containing the point, consisting of two equal sections joined at a point. The fixed point is called the

vertex of the cone, the moving line in any position is called the generator and if the generator cuts a fixed curve

then the curve is called the guiding curve.

The equation of the cone with vertex at origin is a homogeneous equation of second degree in 𝑥, 𝑦, 𝑧

which is 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2𝑡𝑦𝑧 + 2𝑔𝑧𝑥 + 2ℎ𝑥𝑦 = 0.

A right circular cone is a surface generated by a straight line which passes through the fixed point. The

fixed point is called the vertex the constant angle is called the semi-vertical angle and the fixed line through the

fixed point is called axis of the cone.

The equation of right circular cone whose vertex as origin, axis-𝑜𝑧 and semi-vertical angle α is given by

𝑥2 + 𝑦2 = 𝑧2 tan2 𝛼

Page 51 of 42

Cylinder:

A. A cylinder is the surface generated by a straight line which is parallel to a fixed straight line and

satisfies one more condition that it may intersect a fixed curve or touch a given surface.

B. A cylinder whose equation is second degree in 𝑥, 𝑦, 𝑧 is called a quadratic cylinder.

C. A right circular cylinder is the surface generated by a straight line which is parallel to a fixed line is at a

constant distance from it the fixed line is called the axis and the constant distance is called radius of the

cylinder.

The equation of the right circular cylinder whose axis is z-axis and radius 𝑎 is given by

 (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑎2

Conclusion:

1. The equation of sphere with center at (1,2, −3) and radius =4 is given by

 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 − 4𝑦 + 6𝑧 + 14 = 16

2. The equation of the cone with center at (2, −3,5) and semi-vertical angle

30° is given by

3. The equation of the cylinder with center at (2,3) and radius =2 is given by

𝑥2 + 𝑦2 − 4𝑥 − 6𝑦 + 13 = 4

Find the equation of
1. Sphere with center at (1,2, −3) and radius =4

2. Cone with center at (2, −3,5) and semi-vertical angle 30°

3. Cylinder with center at (2,3) and radius =2

PROGRAM:

Page 52 of 42

OUTPUT:

Page 53 of 42

Experiment 11
Program11: Program to find distance between a straight line and a plane.

Aim: To find the distance between the line and the plane

3𝑥 − 2𝑦 + 𝑧 = 2

Software used: Maxima

Distance between straight line and a plane:

The distance between a straight line and plane can be found by finding distance between a point 𝑃 on the

straight line and the plane provided the line and plane are parallel. Consider a straight line

Where (𝑥1, 𝑦1, 𝑧1) are point on the line and 𝑙, 𝑚, 𝑛 are direction vectors

of the line and the plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 ------------(2) where 𝑎, 𝑏, 𝑐 are normal vector of the plane.

If (𝑙𝑖 + 𝑚𝑗 + 𝑛𝑘) ∙ (𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘) = 0 then the line and plane are parallel

The distance can be found by using

Conclusion: The line and plane are parallel and distance between line and plane is

Find the distance between the line and the plane 3𝑥 − 2𝑦 + 𝑧 = 2

PROGRAM:

Page 54 of 42

OUTPUT:

Page 55 of 42

Page 56 of 42

Experiment 12
Program12: Program to construct and plot some standard surface.

Aim: To construct and plot ellipsoid, elliptic paraboloid and hyperbolic paraboloid.

Software used: Maxima

Standard surfaces:

1. Ellipsoid: Ellipsoid is a closed surface of which all plane cross sections are either ellipse or circle. An

ellipsoid is symmetrical about three mutually perpendicular axes that intersect at the center.

If 𝑎, 𝑏, 𝑐 are the principle semi-axes the general equation is
 2 2 2

If 𝑎 = 𝑏 = 𝑐 then the surface is a sphere and the intersection with any plane passing through it is a circle

• It is symmetrical about each of the co-ordinate planes as only even powers of 𝑥, 𝑦, 𝑧 occur in its

equation.

• It meets 𝑥-axis at 𝐴(𝑎, 0,0) , 𝐴′(−𝑎, 0,0);

𝑦-axis at B(0, 𝑏, 0) , 𝐵′(0, −𝑏, 0);

𝑧-axis at 𝐶(0,0, 𝑐) , 𝐶′(0,0, −𝑐);

• Its section by the co-ordinate planes are ellipses. 𝑖. 𝑒., the section by 𝑦𝑧

plane (𝑥 = 0) is the ellipse

2. Elliptic paraboloid: Elliptic paraboloid is a quadric surface whose vertical cross sections are parabolas

while horizontal cross sections are ellipses.

 2 2
The general form of the equation is
where 𝑎, 𝑏 are constants that dictate the level of curvature in the 𝑥𝑦 and 𝑦𝑧 planes respectively. If 𝑐 is

positive then the shape is in positive direction and if it is negative then shape is on negative direction.

• It is symmetrical about 𝑦𝑧 plane and 𝑧𝑥 plane as only even powers of 𝑥 and 𝑦 occur in the equation.

• It meets the axis at the origin only and touches the 𝑥𝑦 plane.
2

• Its the section by 𝑦𝑧 plane (𝑥 = 0) is a parabola
2

Its the section by 𝑧𝑥 plane (𝑦 = 0) is a parabola

Its the section by 𝑥𝑦 plane (𝑧 = 0) is the point ellipse

Page 57 of 42

3. Hyperbolic paraboloid: A hyperbolic paraboloid is a doubly ruled surface shape the general form is

 . In this position the hyperbolic

paraboloid opens downwards along 𝑥-axis and upwards along the 𝑦-axis.

• It is symmetrical about 𝑦𝑧 plane and 𝑧𝑥 plane as only even powers of 𝑥 and 𝑦 occur in the equation.

• It meets the axis at the origin only and touches the 𝑥𝑦 plane.

• Its the section by 𝑦𝑧 plane (𝑥 = 0) is a parabola Its the section by 𝑧𝑥 plane (𝑦 = 0) is

a parabola

Its the section by 𝑥𝑦 plane (𝑧 = 0) is the part of lines

Conclusion:

1. Equation of ellipsoid with 𝑎 = 2, 𝑏 = 1, 𝑐 = 3 is

2. Equation of elliptic paraboloid with 𝑎 = 2, 𝑏 = 3, 𝑐 = 5 is

3. Equation of hyperbolic paraboloid with 𝑎 = 2, 𝑏 = 3, 𝑐 = 1 is

Find the equation of
1. Ellipsiod with 𝑎 = 2, 𝑏 = 1, 𝑐 = 3

2. Elliptic paraboloid with 𝑎 = 2, 𝑏 = 3, 𝑐 = 5

3. Hyperbolic paraboloid with 𝑎 = 2, 𝑏 = 3, 𝑐 = 1

PROGRAM:

Page 58 of 42

OUTPUT:

Page 59 of 42

BLDEA’s s.B. Arts AnD K.C.P. sCiEnCE

CoLLEgE, VijAyAPur
(Affiliated to Rani Channamma University, Belagavi)

Practical’s on DSC 1
LinEAr ALgEBrA

(As PEr nEP-2020)

MAnuAL
B. Sc. VI Semester

Name:………………………………………………………………………………………...

Class:……………………………………………………………………………………………

UUCMS No:…………………………………………………………………………………

DEPARTMENT OF MATHEMATICS

 2

CONTENTS

Sl. No. Title

1 Contents 2

2 List of Programs 3

3 Program 1: Program on Linear Combination of vectors. 4

4 Program 2: Program to verify Linear Dependence and Independence. 12

3 Program 3: Program to find Basis and Dimension of the subspaces. 19

6 Program 4: Program to verify if a function is Linear Transformation or not. 27

7 Program 5: Program to find the Matrix of linear transformation. 33

8
Program 6: Program to find the Eigenvalues and Eigenvectors of a given linear

transformation.
42

9 Program 7: Program on Rank – Nullity theorem. 50

10
Program 8: Program to verify if the given linear transformation is Singular /

 Non-singular.
59

11 Program 9: Program to find the Minimal Polynomial of given transformation. 65

12
Program 10: Program to find the Algebraic Multiplicity of the Eigenvalues of the

given linear transformation.
72

13 Program 11: Program on Diagonalization. 81

Page No

 3

List of Programs

For Sixth Semester DSC 1 Mathematics

(Practicals on Linear Algebra)

(4 Hours per Week and 56 hours per Semester)

1. Program on linear combination of vectors.

2. Program to verify linear dependence and independence.

3. Program to find basis and dimension of the subspaces.

4. Program to verify if a function is linear transformation or not.

5. Program to find the matrix of linear transformation.

6. Program to find the Eigenvalues and Eigenvectors of a given linear transformation.

7. Program on Rank – Nullity theorem.

8. Program to verify if the given linear transformation is singular/non-singular.

9. Program to find the minimal polynomial of given transformation.

10. Program to find the algebraic multiplicity of the Eigenvalues of the given

linear transformation.

11. Program on diagonalization.

 4

Program 1

Program on linear combination of vectors.

Aim: To check whether given vector is in the Linear Span of given subset of vectors of a

vector space and expressing it as a linear combination of those vectors using

Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Key Function

. (dot)

The operator . represents noncommutative multiplication

and scalar product. It is used for usual multiplication of

matrices.

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

linsolve (A,B)

Solves the list of simultaneous linear equations for the list

A of variables in list B. The expressions must each be

polynomials in the variables and may be equations.

 %r, %r1, %r2, etc

These are system generated symbols for arbitrary

parameters for solution of under-determined system of

equations

setify (A) Constructs a set from the elements of the list A.

' The single quote operator ' prevents evaluation.

load("ratpow")

loads the package ratpow which provides functions that

return the coefficients of the numerator of a CRE

polynomial in a given variable.

ratp_dense_coeffs (expr, x)
Returns the coefficients of powers of x from highest to

lowest

matrix(R1,R2,…Rm)$
Creates matrix whose rows are R1,R2,…Rm which are lists

of equal length.

list_matrix_entries (M) Returns a list containing the elements of the matrix M

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and

radicals.

and The logical conjunction operator.

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise

the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

 5

Definitions and Formulae:

Linear Combination of vectors: Let 𝑽 be a vector space over a field 𝑭. Let 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 be any 𝒏

vectors of 𝑽. A vector of the form

∑𝜶𝒊𝒗𝒊 =

𝒏

𝒊=𝟏

𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐+. . . +𝜶𝒏𝒗𝒏

where 𝜶𝟏, 𝜶𝟐, , 𝜶𝒏 ∈ 𝑭 are scalars, is called a linear combination of the vectors 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏. Any

given vector 𝒗 is a linear combination of vectors 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 if ∃ scalars 𝜶𝟏, 𝜶𝟐, , 𝜶𝒏 ∈ 𝑭 such

that 𝒗 = 𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐+. . . +𝜶𝒏𝒗𝒏. Otherwise, 𝒗 is not a linear combination of vectors 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏.

 Linear Span of a subset: Let 𝑽 be a vector space over a field 𝑭. Let 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a non-

empty subset of 𝒏 vectors of 𝑽. The set of all linear combinations of elements of S is called its linear

span and is denoted by 𝑳(𝑺).

𝑳(𝑺) = {∑𝜶𝒊𝒗𝒊 =

𝒏

𝒊=𝟏

𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐 +⋯+ 𝜶𝒏𝒗𝒏 | 𝒗𝒊 ∈ 𝑺, 𝜶𝒊 ∈ 𝑭, ∀ 𝒊 = 𝟏, 𝟐, , … . , 𝒏}

Standard Vector spaces:

i) 𝑹𝒏 = {(𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏)| 𝒙𝒊 ∈ 𝑹} the set of all n-tuples of real numbers is a vector space over 𝑹

ii) 𝑷 = {∑ 𝒂𝒊𝒙
𝒊| 𝒏 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝒂𝒊 ∈ 𝑹

𝒏
𝒊=𝟎 } the set of all polynomials in 𝑥 with real

coefficients, at most of degree 𝑛 is a vector space over 𝑹

iii) 𝑹𝒎×𝒏 = {[a𝒊𝒋]m×n
| a𝒊𝒋 ∈ 𝑹} is the set of all real matrices of order m× n is a real vector space.

Program:

Program to check whether 𝑣 is in 𝐿(𝑆). Expressing 𝑣 as linear combination of vectors of 𝑆 if it is in 𝐿(𝑆).
where 𝑆 ⊆ 𝑅𝑛

v: given vector$

v1: vector 1 of S$

v2: vector 2 of S$

v3: vector 3 of S$

S:[v1,v2,v3]$

a:[α,β,γ]$

M:linsolve(S.a-v,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)")

and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

 6

Program:

Program to check whether 𝑣 is in 𝐿(𝑆). Expressing 𝑣 as linear combination of vectors of 𝑆 if it is in 𝐿(𝑆).
where 𝑆 ⊆ 𝑃

load("ratpow")$

v: given vector$

v1: vector 1 of S$

v2: vector 2 of S$

v3: vector 3 of S$

S:[v1,v2,v3]$

a:[α,β,γ]$

L:ratp_dense_coeffs(S.a-v,x)$

M:linsolve(L,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

Program:

Program to check whether 𝑣 is in 𝐿(𝑆). Expressing 𝑣 as linear combination of vectors of 𝑆 if it is in 𝐿(𝑆).
where 𝑆 ⊆ 𝑅𝑚×𝑛

v: given matrix$

v1: matrix 1 of S$

v2: matrix 2 of S$

v3: matrix 3 of S$

S:[v1,v2,v3]$

a:[α,β,γ]$

L:list_matrix_entries (S.a-v)$

M:linsolve(L,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

Note: Number of members in list S and list a taken 3 each in above programs. Take actual

number of members present in S of given problem.

 7

Worked Examples:

Problem 1. Check whether 𝑣 = (1,2,3,5) is in 𝐿(𝑆) or not and express it as a linear combination of

vectors of 𝑆 if it is in 𝐿(𝑆) where 𝑆 = {(2,3,4,5), (−1,−2, −3,−4), (6,7,8,9)} ⊆ 𝑅4

Program:

v:[1,2,3,5]$

v1:[2,3,4,5]$

v2:[-1,-2,-3,-4]$

v3:[6,7,8,9]$

S:[v1,v2,v3]$

a:[α,β,γ]$

M:linsolve(S.a-v,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[−1,−2, −3,−4], [2,3,4,5], [6,7,8,9]}

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [1,2,3,5]

𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝐿(𝑆)

Problem 2. Check whether 𝑣 = (2,4,3) is in 𝐿(𝑆) or not and express it as a linear combination of

vectors of 𝑆 if it is in 𝐿(𝑆) where 𝑆 = {(1,−1,0), (0,2,1)} ⊆ 𝑅3

Program:

v:[2,4,3]$

v1:[1,-1,0]$

v2:[0,2,1]$

S:[v1,v2]$

a:[α,β]$

M:linsolve(S.a-v,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2])$

 8

Output:
𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[0,2,1], [1, −1,0]}

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [2,4,3]

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆)

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣2𝛽 + 𝑣1𝛼 = 3𝑣2 + 2𝑣1

Problem 3. Check whether 𝑣 = (1,−2,5) is in 𝐿(𝑆) or not and express it as a linear combination of

vectors of 𝑆 if it is in 𝐿(𝑆) where 𝑆 = {(1,1,1), (1,2,3), (2, −1,1)} ⊆ 𝑅3

Program:

v:[1,-2,5]$

v1:[1,1,1]$

v2:[1,2,3]$

v3:[2,-1,1]$

S:[v1,v2,v3]$

a:[α,β,γ]$

M:linsolve(S.a-v,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

Output:
𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1,1,1], [1,2,3], [2, −1,1]}

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [1,−2,5]

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆)

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 2𝑣3 + 3𝑣2 − 6𝑣1

Problem 4. Check whether 𝑣 = 2𝑥3 + 𝑥2 + 3𝑥 − 1 is in 𝐿(𝑆) or not and express it as a linear

combination of vectors of 𝑆 if it is in 𝐿(𝑆) where 𝑆 = {𝑥, 𝑥2 + 1, 𝑥3 − 1} ⊆ 𝑃

Program:

load("ratpow")$

v:2*x^3+x^2+3*x-1$

v1:x$

v2:x^2+1$

v3:x^3-1$

S:[v1,v2,v3]$

a:[α,β,γ]$

L:ratp_dense_coeffs(S.a-v,x)$

 9

M:linsolve(L,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {𝑥, 𝑥2 + 1, 𝑥3 − 1}

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = 2𝑥3 + 𝑥2 + 3𝑥 − 1

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆)

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 2𝑣3 + 𝑣2 + 3𝑣1

Problem 5. Check whether 𝑣 = 𝑥2 + 4𝑥 − 3 is in 𝐿(𝑆) or not and express it as a linear combination

of vectors of 𝑆 if it is in 𝐿(𝑆) where 𝑆 = {𝑥2 − 2𝑥 + 5 , 2𝑥2 − 3𝑥, 𝑥 + 3} ⊆ 𝑃

Program:

load("ratpow")$

v:x^2+4*x-3$

v1:x^2-2*x+5$

v2:x^2-3*x$

v3:x+3$

S:[v1,v2,v3]$

a:[α,β,γ]$

L:ratp_dense_coeffs(S.a-v,x)$

M:linsolve(L,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {𝑥 + 3, 𝑥2 − 3𝑥, 𝑥2 − 2𝑥 + 5}

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = 𝑥2 + 4𝑥 − 3

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆)

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 19𝑣3 + 13𝑣2 − 12𝑣1

 10

Problem 6. Check whether 𝑣 = [
3 −1
1 −2

]is in 𝐿(𝑆) or not and express it as a linear combination of

vectors of 𝑆 if it is in 𝐿(𝑆) where 𝑆 = {[
1 1
0 −1

] , [
1 1
−1 0

] , [
1 −1
0 0

]} ⊆ 𝑅2×2

Program:

v:matrix([3,-1],[1,-2])$

v1:matrix([1,1],[0,-1])$

v2:matrix([1,1],[-1,0])$

v3:matrix([1,-1],[0,0])$

S:[v1,v2,v3]$

a:[α,β,γ]$

L:list_matrix_entries (S.a-v)$

M:linsolve(L,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[
1 −1
0 0

] , [
1 1
−1 0

] , [
1 1
0 −1

]}

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [
3 −1
1 −2

]

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆)

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 2𝑣3 − 𝑣2 + 2𝑣1

Problem 7. Check whether 𝑣 = [
6 −1
−8 −8

]is in 𝐿(𝑆) or not and express it as a linear combination of

vectors of 𝑆 if it is in 𝐿(𝑆) where 𝑆 = {[
1 2
−1 3

] , [
0 1
2 4

] , [
4 −2
0 −2

]} ⊆ 𝑅2×2

Program:

v:matrix([6,-1],[-8,-8])$

v1:matrix([1,2],[-1,3])$

v2:matrix([0,1],[2,4])$

v3:matrix([4,-2],[0,-2])$

S:[v1,v2,v3]$

a:[α,β,γ]$

L:list_matrix_entries (S.a-v)$

 11

M:linsolve(L,a)$

print("Given set of vectors is S=",setify(S))$

print("Given vector is v=",v)$

if M=[] then print("v is not in L(S)")

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[
0 1
2 4

] , [
1 2
−1 3

] , [
4 −2
0 −2

]}

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [
6 −1
−8 −8

]

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆)

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 𝑣3 − 3𝑣2 + 2𝑣1

Exercise:

Write a program to check whether 𝑣 is in 𝐿(𝑆) or not and express it as a linear combination of vectors

of 𝑆 if it is in 𝐿(𝑆) for the following:

1. 𝑣 = (3,−7,6), 𝑆 = {(1,−3,2), (2,4,1), (1,1,1)} (Answer: v is in L(S))

2. 𝑣 = (3,9, −4,4), 𝑆 = {(1,−2,0,3), (2, −1,2,1), (2,3,0,1)} (Answer: v is in L(S))

3. 𝑣 = 𝑥2 + 𝑥 + 1, 𝑆 = {𝑥, 𝑥2 + 1, 𝑥3 − 1} (Answer: v is in L(S))

4. 𝑣 = 2𝑥3 + 𝑥2 − 𝑥 − 5, 𝑆 = {1, 𝑥 + 1, 𝑥2 + 𝑥 + 1, 𝑥3 + 𝑥2 + 𝑥 + 1} (Answer: v is in L(S))

5. 𝑣 = [
−1 7
5 1

], 𝑆 = { [
0 1
2 4

] , [
1 2
−1 3

] , [
4 −2
0 −2

] } (Answer: v is not in L(S))

6. 𝑣 = [
6 3
0 8

], 𝑆 = { [
0 1
2 4

] , [
1 2
−1 3

] , [
4 −2
0 −2

] } (Answer: v is in L(S))

 12

Program 2

Program to verify linear dependence and independence

Aim: To check whether given set of vectors is linearly dependent or independent using

Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Key Function

. (dot)

The operator . represents noncommutative multiplication

and scalar product. It is used for usual multiplication of

matrices.

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

hipow (expr, x) Returns the highest explicit exponent of x in expr

lopow (expr, x)
Returns the lowest exponent of x which explicitly appears

in expr.

matrix(R1,R2,…Rm)$
Creates matrix whose rows are R1,R2,…Rm which are lists

of equal length.

list_matrix_entries (M) Returns a list containing the elements of the matrix M

apply('matrix,L) Converting nested lists L to matrix

rank (M) Computes the rank of the matrix M.

setify (A) Constructs a set from the elements of the list A.

' The single quote operator ' prevents evaluation.

makelist (expr, i, i_0, i_max)

Returns the list of elements obtained when ev

(expr, i=j) is applied to the elements j of the

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or

equal to |i_max|.

length (expr)
Returns the number of parts in the external (displayed)

form of expr

:= The function definition operator

and The logical conjunction operator.

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise

the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

 13

Definitions and Formulae:

Linearly Dependent Set: Let 𝑽 be a vector space over a field 𝑭. Let 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a non-

empty subset of 𝒏 vectors of 𝑽. Then the set 𝑺 is called linearly dependent if ∃ scalars

𝜶𝟏, 𝜶𝟐, , 𝜶𝒏 ∈ 𝑭 such that

∑𝜶𝒊𝒗𝒊 =

𝒏

𝒊=𝟏

𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐+. . . +𝜶𝒏𝒗𝒏 = 𝟎 with 𝜶𝒊 ≠ 𝟎 for some 𝒊

Linearly Independent Set: Let 𝑽 be a vector space over a field 𝑭. Let 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a non-

empty subset of 𝒏 vectors of 𝑽. Then the set 𝑺 is called linearly independent iff

∑𝜶𝒊𝒗𝒊 =

𝒏

𝒊=𝟏

𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐+. . . +𝜶𝒏𝒗𝒏 = 𝟎 ⇒ 𝜶𝒊 = 𝟎 ∀ 𝒊

Note that linear dependence and independence are mutually exclusive. Thus, a set is either linearly

independent or dependent but not both. So, we can say that linearly dependent set is not linearly

independent and vice-versa.

Standard Vector spaces:

i) 𝑹𝒏 = {(𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏)| 𝒙𝒊 ∈ 𝑹} the set of all n-tuples of real numbers is a vector space over 𝑹

ii) 𝑷 = {∑ 𝒂𝒊𝒙
𝒊| 𝒏 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝒂𝒊 ∈ 𝑹

𝒏
𝒊=𝟎 } the set of all polynomials in 𝑥 with real

coefficients, at most of degree 𝑛 is a vector space over 𝑹

iii) 𝑹𝒎×𝒏 = {[a𝒊𝒋]m×n
| a𝒊𝒋 ∈ 𝑹} is the set of all real matrices of order m× n is a real vector space.

Program:

Program to check whether 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3} is linearly dependent or independent where 𝑆 ⊆ 𝑅𝑛

v1: vector 1 of S$

v2: vector 2 of S$

v3: vector 3 of S$

S:[v1,v2,v3]$

M:apply('matrix,S)$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any

number of vectors.

Prepared on 05.04.2024 by E N, Assistant Professor of Mathematics

 14

Program:

Program to check whether 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3} is linearly dependent or independent where 𝑆 ⊆ 𝑃

v1: vector 1 of S$

v2: vector 2 of S$

v3: vector 3 of S$

S:[v1,v2,v3]$

L:makelist(makelist(coeff (S[j], x,i),i,lopow(S,x),hipow(S,x)),j,1,length(S))$

M:apply('matrix,L)$

print("Given set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any

number of vectors.

Program:

Program to check whether 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3} is linearly dependent or independent where 𝑆 ⊆ 𝑅𝑚×𝑛

g(x):=list_matrix_entries(x)

v1: matrix 1 of S$

v2: matrix 2 of S$

v3: matrix 3 of S$

S:[v1,v2,v3]$

T:makelist(g(S[i]),i,length(S))$

M:apply('matrix,T)$

print("Given set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any

number of vectors.

 15

Worked Examples:

Problem 1. Write a program to check whether 𝑆 = {(1,0), (1,1)} is linearly independent or not

where 𝑆 ⊆ 𝑅2

Program:

v1:[1,0]$

v2:[1,1]$

S:[v1,v2]$

M:apply('matrix,S)$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1,0], [1,1]}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

Problem 2. Write a program to check whether 𝑆 = {(1,1,2,4), (2, −1,−5,2), (1, −1,−4,0), (2,1,1,6)} is

linearly independent or not where 𝑆 ⊆ 𝑅4

Program:

v1:[1,1,2,4]$

v2:[2,-1,-5,2]$

v3:[1,-1,-4,0]$

v4:[2,1,1,6]$

S:[v1,v2,v3,v4]$

M:apply('matrix,S)$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1, −1,−4,0], [1,1,2,4], [2, −1,−5,2], [2,1,1,6]}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

 16

Problem 3. Write a program to check whether 𝑆 = {(1,0,−1), (3,1,1), (0,1,−1)} is linearly independent

or not where 𝑆 ⊆ 𝑅3

Program:

v1:[1,0,-1]$

v2:[3,1,1]$

v3:[0,1,-1]$

S:[v1,v2,v3]$

M:apply('matrix,S)$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[0,1, −1], [1,0, −1], [3,1,1]}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

Problem 4. Write a program to check whether 𝑆 = {𝑥2 + 1, 𝑥 − 1, 𝑥 + 1} is linearly independent or not

where 𝑆 ⊆ 𝑃

Program:

v1:x^2+1$

v2:x-1$

v3:x+1$

S:[v1,v2,v3]$

L:makelist(makelist(coeff (S[j], x,i),i,lopow(S,x),hipow(S,x)),j,1,length(S))$

M:apply('matrix,L)$

print("Given set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {𝑥 − 1, 𝑥 + 1, 𝑥2 + 1}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

 17

Problem 5. Write a program to check whether 𝑆 = {1,1 + 𝑥, 1 + 𝑥 + 𝑥2, 1 + 𝑥 + 𝑥2 + 𝑥3} is linearly

independent or not where 𝑆 ⊆ 𝑃

Program:

v1:1$

v2:1+x$

v3:1+x+x^2$

v4:1+x+x^2+x^3$

S:[v1,v2,v3,v4]$

L:makelist(makelist(coeff (S[j], x,i),i,lopow(S,x),hipow(S,x)),j,1,length(S))$

M:apply('matrix,L)$

print("Given set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {1, 𝑥 + 1, 𝑥2 + 𝑥 + 1, 𝑥3 + 𝑥2 + 𝑥 + 1}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

Problem 6. Write a program to check whether 𝑆 = {[
1 2
−1 3

] , [
0 1
2 4

] , [
4 8
−4 12

]} is linearly

independent or not where 𝑆 ⊆ 𝑅2×2

Program:

g(x):=list_matrix_entries(x)$

v1:matrix([1,2],[-1,3])$

v2:matrix([0,1],[2,4])$

v3:matrix([4,8],[-4,12])$

S:[v1,v2,v3]$

T:makelist(g(S[i]),i,length(S))$

M:apply('matrix,T)$

print("Given set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {(
0 1
2 4

) , (
1 2
−1 3

) , (
4 8
−4 12

)}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

 18

Problem 7. Write a program to check whether 𝑆 = {[
0 1 −1
1 2 1

] , [
1 −1 1
1 2 0

] , [
1 2 1
0 3 −1

]} is linearly

independent or not where 𝑆 ⊆ 𝑅2×3

Program:

g(x):=list_matrix_entries(x)$

v1:matrix([1,2,1],[0,3,-1])$

v2:matrix([1,-1,1],[1,2,0])$

v3:matrix([0,1,-1],[1,2,1])$

S:[v1,v2,v3]$

T:makelist(g(S[i]),i,length(S))$

M:apply('matrix,T)$

print("Given set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

else print("Given set of vectors is Linearly Dependent")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {(
0 1 −1
1 2 1

) , (
1 −1 1
1 2 0

) , (
1 2 1
0 3 −1

)}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

Exercise:

 Write a program to check linear dependence and independence of given set 𝑆

1. 𝑆 = {(−1,0,1), (1,0,1), (1,1,0)} ⊆ 𝑅3 (Answer: Linearly Independent)

2. 𝑆 = {(−2,1,3), (1,2,3), (3,1,0)} ⊆ 𝑅3 (Answer: Linearly Dependent)

3. 𝑆 = {(1,−2,5), (2,3,1)} ⊆ 𝑅3 (Answer: Linearly Independent)

4. 𝑆 = {2, 𝑥 + 1,3𝑥 − 1, 𝑥2} ⊆ 𝑃 (Answer: Linearly Dependent)

5. 𝑆 = {𝑥2 + 6𝑥 + 5, 2𝑥2 + 4𝑥 + 3, 𝑥2 − 2𝑥 + 1} ⊆ 𝑃 (Answer: Linearly Independent)

6. 𝑆 = {[
1 2
−1 3

] , [
1 3
1 7

] , [
0 1
2 4

] , [
4 −2
0 −2

]} 𝑆 ⊆ 𝑅2×2 (Answer: Linearly Dependent)

7. 𝑆 = {[
1 −2 5
−1 3 2

] , [
1 −1 1
2 3 0

] , [
4 2 3
1 −2 1

]} 𝑆 ⊆ 𝑅2×3 (Answer: Linearly Independent)

 19

Program 3

Program to find basis and dimension of the subspaces.

Aim: To find basis and dimension of the given subspace of a vector space using

Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Key Function

args(M) Converts a matrix M to a nested list

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

triangularize (M)
Returns the upper triangular form of the matrix M, as

produced by Gaussian elimination

firstn (expr, count) Returns the first count arguments of expr

matrix(R1,R2,…Rm)$
Creates matrix whose rows are R1,R2,…Rm which are lists

of equal length.

list_matrix_entries (M) Returns a list containing the elements of the matrix M

apply('matrix,L) Converting nested lists L to matrix

rank (M) Computes the rank of the matrix M.

setify (A) Constructs a set from the elements of the list A.

' The single quote operator ' prevents evaluation.

makelist (expr, i, i_0, i_max)

Returns the list of elements obtained when ev

(expr, i=j) is applied to the elements j of the

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or

equal to |i_max|.

length (expr)
Returns the number of parts in the external (displayed)

form of expr

:= The function definition operator

and The logical conjunction operator.

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise

the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

 20

Definitions and Formulae:

Basis and Dimension of a Vector space: Let 𝑽 be a vector space over a field 𝑭. A subset 𝑩 =

{𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} ⊆ 𝑽 is called a basis of 𝑽 if

i) 𝑩 is linearly independent and

ii) 𝑩 spans 𝑽

Furthermore, the number of vectors in a basis of 𝑽 is called the dimension of 𝑽

Example: 1) The dimension of 𝑹𝒏, the vector space of n-tuples of real numbers over 𝑹, is 𝒏

 2) The dimension of 𝑹𝒎×𝒏, the vector space of all 𝒎× 𝒏 real matrices over 𝑹, is 𝒎𝒏

 3) The dimension of 𝑷𝒏, the vector space of all polynomials in x of degree at most 𝒏 with

 real coefficients over 𝑹, is 𝒏 + 𝟏

Basis and Dimension of a Subspace: Let 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a subset of vector space 𝑽. A basis

for the subspace spanned by 𝑺 is a linearly independent subset 𝑩 ⊆ 𝑺 which spans the subspace. If

𝑺 itself is linearly independent, then 𝑺 itself is a basis and its cardinality is the dimension of the

subspace. If 𝑺 is linearly dependent, then any maximal linearly independent subset of 𝑺 will be a basis

for the subspace and its cardinality will be the dimension.

Program:

Program to find a basis and the dimension of the subspace spanned by the set 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3}

where 𝑆 ⊆ 𝑅𝑛

v1: vector 1 of S$

v2: vector 2 of S$

v3: vector 3 of S$

S:[v1,v2,v3]$

M:triangularize(apply('matrix,S))$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

and print("A Basis for subspace L(S) is B=", setify(S))

and print("Dimension of subspace L(S) =", rank(M))

else print("Given set of vectors is Linearly Dependent")

and print("A Basis for subspace L(S) is B=", setify(firstn(args(M),rank(M))))

and print("Dimension of subspace L(S) =", rank(M))$

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any

number of vectors.

 21

Program:

Program to find a basis and the dimension of the subspace spanned by the set 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3}

where 𝑆 ⊆ 𝑅𝑚×𝑛

g(x):=list_matrix_entries(x)$

f(x):=matrix([x[1],x[2]],[x[3],x[4]])$

v1: vector 1 of S$

v2: vector 2 of S$

v3: vector 3 of S$

S:[v1,v2,v3]$

T:makelist(g(S[i]),i,length(S))$

M:triangularize(apply('matrix,T))$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

and print("A Basis for subspace L(S) is B=", setify(S))

and print("Dimension of subspace L(S) =", rank(M))

else print("Given set of vectors is Linearly Dependent")

and print("A Basis for subspace L(S) is B=",

setify(makelist(f(firstn(args(M),rank(M))[i]),i,1,rank(M))))

and print("Dimension of subspace L(S) =", rank(M))$

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any

number of vectors.

 22

Worked Examples:

Problem 1. Write a program to find a basis and the dimension of the subspace spanned by the set

𝑆 = {(1,2,3), (3,1,0), (−2,1,3)} ⊆ 𝑅3

Program:

v1:[1,2,3]$

v2:[3,1,0]$

v3:[-2,1,3]$

S:[v1,v2,v3]$

M:triangularize(apply('matrix,S))$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

and print("A Basis for subspace L(S) is B=", setify(S))

and print("Dimension of subspace L(S) =", rank(M))

else print("Given set of vectors is Linearly Dependent")

and print("A Basis for subspace L(S) is B=", setify(firstn(args(M),rank(M))))

and print("Dimension of subspace L(S) =", rank(M))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[−2,1,3], [1,2,3], [3,1,0]}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[0,5,9], [3,1,0]}

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) = 2

Problem 2. Write a program to find a basis and the dimension of the subspace spanned by the set

𝑆 = {(1,1,2,4), (2, −1,−5,2), (1, −1,−4, 0), (2,1,1,6)} ⊆ 𝑅4

Program:

v1:[1,1,2,4]$

v2:[2,-1,-5,2]$

v3:[1,-1,-4,0]$

v4:[2,1,1,6]$

S:[v1,v2,v3,v4]$

M:triangularize(apply('matrix,S))$

print("Given Set of Vectors is S=", setify(S))$

 23

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

and print("A Basis for subspace L(S) is B=", setify(S))

and print("Dimension of subspace L(S) =", rank(M))

else print("Given set of vectors is Linearly Dependent")

and print("A Basis for subspace L(S) is B=", setify(firstn(args(M),rank(M))))

and print("Dimension of subspace L(S) =", rank(M))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1, −1,−4,0], [1,1,2,4], [2, −1,−5,2], [2,1,1,6]}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[0,1,3,2], [1, −1,−4,0]}

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) = 2

Problem 3. Write a program to find a basis and the dimension of the subspace spanned by the set

𝑆 = {(1,2,0), (1,1,1), (2,0,1)} ⊆ 𝑅3

Program:

v1:[1,2,0]$

v2:[1,1,1]$

v3:[2,0,1]$

S:[v1,v2,v3]$

M:triangularize(apply('matrix,S))$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

and print("A Basis for subspace L(S) is B=", setify(S))

and print("Dimension of subspace L(S) =", rank(M))

else print("Given set of vectors is Linearly Dependent")

and print("A Basis for subspace L(S) is B=", setify(firstn(args(M),rank(M))))

and print("Dimension of subspace L(S) =", rank(M))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1,1,1], [1,2,0], [2,0,1]}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[1,1,1], [1,2,0], [2,0,1]}

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) = 3

 24

Problem 4. Write a program to find a basis and the dimension of the subspace spanned by the set

𝑆 = {[
1 −5
−4 2

] , [
1 1
−1 5

] , [
2 −4
−5 7

] , [
1 −7
−5 1

]} ⊆ 𝑅2×2

Program:

g(x):=list_matrix_entries(x)$

f(x):=matrix([x[1],x[2]],[x[3],x[4]])$

v1:matrix([1,-5],[-4,2])$

v2:matrix([1,1],[-1,5])$

v3:matrix([2,-4],[-5,7])$

v4:matrix([1,-7],[-5,1])$

S:[v1,v2,v3,v4]$

T:makelist(g(S[i]),i,length(S))$

M:triangularize(apply('matrix,T))$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

and print("A Basis for subspace L(S) is B=", setify(S))

and print("Dimension of subspace L(S) =", rank(M))

else print("Given set of vectors is Linearly Dependent")

and print("A Basis for subspace L(S) is B=", setify(makelist(f(firstn(args(M),rank(M))[i]),i,1,rank(M))))

and print("Dimension of subspace L(S) =", rank(M))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[
1 −7
−5 1

] , [
1 −5
−4 2

] , [
1 1
−1 5

] , [
2 −4
−5 7

]}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[
0 6
3 3

] , [
1 −5
−4 2

]}

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) = 2

 25

Problem 5. Write a program to find a basis and the dimension of the subspace spanned by the set

𝑆 = {[
1 −2 5
−1 3 2

] , [
1 −1 1
2 3 0

] , [
2 −3 6
1 6 2

]} ⊆ 𝑅2×3

Program:

g(x):=list_matrix_entries(x)$

f(x):=matrix([x[1],x[2],x[3]],[x[4],x[5],x[6]])$

v1:matrix([1,-2,5],[-1,3,2])$

v2:matrix([1,-1,1],[2,3,0])$

v3:matrix([2,-3,6],[1,6,2])$

S:[v1,v2,v3]$

T:makelist(g(S[i]),i,length(S))$

M:triangularize(apply('matrix,T))$

print("Given Set of Vectors is S=", setify(S))$

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent")

and print("A Basis for subspace L(S) is B=", setify(S))

and print("Dimension of subspace L(S) =", rank(M))

else print("Given set of vectors is Linearly Dependent")

and print("A Basis for subspace L(S) is B=", setify(makelist(f(firstn(args(M),rank(M))[i]),i,1,rank(M))))

and print("Dimension of subspace L(S) =", rank(M))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[
1 −2 5
−1 3 2

] , [
1 −1 1
2 3 0

] , [
2 −3 6
1 6 2

]}

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[
0 −1 4
−3 0 2

] , [
1 −1 1
2 3 0

]}

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) = 2

 26

Exercise:

Write a program to find a basis and the dimension of the subspace spanned by the set 𝑆

1. 𝑆 = {(2,4,2), (1, −1,0), (1,2,1), (0,3,1)} ⊆ 𝑅3

(Answer: B={(0,6,2), (1, −1,0)}, dim L(S)=2)

2. 𝑆 = {(1,1,1), (1,0,1), (1,0,0), (0,0,1)} ⊆ 𝑅3

(Answer: B={(0,0,1), (0,1,1), (0,0,1)}, dim L(S)=3)

3. 𝑆 = {(1,1), (1, −1)} ⊆ 𝑅2

(Answer: B={(1,1), (1, −1)}, dim L(S)=2)

4. 𝑆 = {[
1 0
0 0

] , [
0 1
1 0

] , [
0 0
0 1

]} ⊆ 𝑅2×2

(Answer: B={[
0 0
0 1

] , [
0 1
1 0

] , [
1 0
0 0

]}, dim L(S)=3)

 27

Program 4

Program to verify if a function is a linear transformation or not.

Aim: To verify if the given function is a linear transformation or not from a vector

space to a vector space, using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Key Function

. (dot)

The operator . represents noncommutative multiplication

and scalar product. It is used for usual multiplication of

matrices.

* (asterisk) The operator * represents commutative multiplication

^ Exponentiation operator or power or index

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

L[i] Returns i-th element of the list L

' The single quote operator ' prevents evaluation.

makelist (expr, i, i_0, i_max)

Returns the list of elements obtained when ev

(expr, i=j) is applied to the elements j of the

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or

equal to |i_max|.

length (expr)
Returns the number of parts in the external (displayed)

form of expr

:= The function definition operator

and The logical conjunction operator.

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise

the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and

radicals.

assoc (key, e)
assoc searches for key as the first part of an argument of e

and returns the second part of the first match, if any.

 28

Definitions and Formulae:

Linear Transformation from a vector space to a vector space: Let 𝑼 and V be two vector spaces

over the same field 𝑭. A mapping or function 𝑻:𝑼 ⟶ 𝑽 is called a linear transformation if

𝑻(𝜶 𝒖𝟏 + 𝜷 𝒖𝟐) = 𝜶 𝑻(𝒖𝟏) + 𝜷 𝑻(𝒖𝟐) ∀ 𝒖𝟏, 𝒖𝟐 ∈ 𝑼 and 𝜶, 𝜷 ∈ 𝑭

A linear transformation is also called a linear mapping. It is a mapping between two vector spaces

that preserves the operations of vector addition and scalar multiplication.

To verify whether given function 𝑇 is a linear transformation or not, just verify that

𝑻(𝜶 𝒖𝟏 + 𝜷 𝒖𝟐) and 𝜶 𝑻(𝒖𝟏) + 𝜷 𝑻(𝒖𝟐) are equal. If these are not equal, then 𝑻 is not a linear

transformation.

Program:

Program to verify whether given function 𝑻:𝑹𝒎⟶𝑹𝒏 is a linear transformation or not.

T(x):=define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

Y:[p,q,r]$

LHS:radcan(T(a*X+b*Y))$

RHS:radcan(a*T(X)+b*T(Y))$

print("Given function isT(x,y,z)=", T(X))$

print("T(aX+bY)=",LHS)$

print("aT(X)+bT(Y)=",RHS)$

if LHS=RHS then print("Given function is a Linear transformation")

else print("Given function is not a linear transformation")$

Note: In the above program X:[x,y,z], Y:[p,q,r] is taken for illustration. Take X, Y

according to given domain of T.

 1. For 𝑹𝒎 = 𝑹𝟐, take X:[x,y], Y:[p,q]

 2. For 𝑹𝒎 = 𝑹𝟑, take X:[x,y,z], Y:[p,q,r]

 3. For 𝑹𝒎 = 𝑹𝟒, take X:[w,x,y,z], Y:[p,q,r,s] etc.

Examples for defining function:

 1. If 𝑻(𝒙, 𝒚, 𝒛) = (𝟐𝒙 + 𝟑𝒚 − 𝒛, 𝟓𝒛 − 𝒚), then define

 𝑻(𝒙):= [𝟐 ∗ 𝒙[𝟏] + 𝟑 ∗ 𝒙[𝟐] − 𝒙[𝟑], 𝟓 ∗ 𝒙[𝟑] − 𝒙[𝟐]]

 2. If 𝑻(𝒙, 𝒚) = (𝒚 − 𝒙, 𝒚, 𝒙 + 𝒚), then define

 𝑻(𝒙):= [𝒙[𝟐] − 𝒙[𝟏], 𝒙[𝟐], 𝒙[𝟏] + 𝒙[𝟐]] etc.

 29

Worked Examples:

Problem 1. Write a program to verify whether 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑦 + 𝑧)

is a linear transformation or not.

 Program:

T(x):=[x[1]+x[2],x[2]+x[3]]$

X:[x,y,z]$

Y:[p,q,r]$

LHS:radcan(T(a*X+b*Y))$

RHS:radcan(a*T(X)+b*T(Y))$

print("Given function isT(x,y,z)=", T(X))$

print("T(aX+bY)=",LHS)$

print("aT(X)+bT(Y)=",RHS)$

if LHS=RHS then print("Given function is a Linear transformation")

else print("Given function is not a linear transformation")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦]

𝑇(𝑎𝑋 + 𝑏𝑌) = [𝑎𝑦 + 𝑎𝑥 + 𝑏𝑞 + 𝑏𝑝, 𝑎𝑧 + 𝑎𝑦 + 𝑏𝑟 + 𝑏𝑞]

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [𝑎𝑦 + 𝑎𝑥 + 𝑏𝑞 + 𝑏𝑝, 𝑎𝑧 + 𝑎𝑦 + 𝑏𝑟 + 𝑏𝑞]

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Problem 2. Write a program to verify whether 𝑻:𝑹𝟑⟶𝑹𝟑 defined by

𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 − 𝑧, 2𝑥 − 𝑦, 𝑦 + 2𝑧) is a linear transformation or not.

 Program:

T(x):=[x[1]+x[2]-x[3],2*x[1]-x[2],x[2]+2*x[3]]$

X:[x,y,z]$

Y:[p,q,r]$

LHS:radcan(T(a*X+b*Y))$

RHS:radcan(a*T(X)+b*T(Y))$

print("Given function isT(x,y,z)=", T(X))$

print("T(aX+bY)=",LHS)$

print("aT(X)+bT(Y)=",RHS)$

if LHS=RHS then print("Given function is a Linear transformation")

else print("Given function is not a linear transformation")$

 30

Output:

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [−𝑧 + 𝑦 + 𝑥, 2𝑥 − 𝑦, 2𝑧 + 𝑦]

𝑇(𝑎𝑋 + 𝑏𝑌) = [−𝑎𝑧 + 𝑎𝑦 + 𝑎𝑥 − 𝑏𝑟 + 𝑏𝑞 + 𝑏𝑝,−𝑎𝑦 + 2𝑎𝑥 − 𝑏𝑞 + 2𝑏𝑝, 2𝑎𝑧 + 𝑎𝑦 + 2𝑏𝑟 + 𝑏𝑞]

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [−𝑎𝑧 + 𝑎𝑦 + 𝑎𝑥 − 𝑏𝑟 + 𝑏𝑞 + 𝑏𝑝,−𝑎𝑦 + 2𝑎𝑥 − 𝑏𝑞 + 2𝑏𝑝, 2𝑎𝑧 + 𝑎𝑦 + 2𝑏𝑟 + 𝑏𝑞]

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Problem 3. Write a program to verify whether 𝑻:𝑹𝟑⟶𝑹 defined by 𝑇(𝑥, 𝑦, 𝑧) = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧

for a fixed (𝛼, 𝛽, 𝛾) is a linear transformation or not.

 Program:

T(x):=α*x[1]+β*x[2]+γ*x[3]$

X:[x,y,z]$

Y:[p,q,r]$

LHS:radcan(T(a*X+b*Y))$

RHS:radcan(a*T(X)+b*T(Y))$

print("Given function isT(x,y,z)=", T(X))$

print("T(aX+bY)=",LHS)$

print("aT(X)+bT(Y)=",RHS)$

if LHS=RHS then print("Given function is a Linear transformation")

else print("Given function is not a linear transformation")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = 𝑧𝛾 + 𝑦𝛽 + 𝑥𝛼

𝑇(𝑎𝑋 + 𝑏𝑌) = (𝑎𝑧 + 𝑏𝑟)𝛾 + (𝑎𝑦 + 𝑏𝑞)𝛽 + (𝑎𝑥 + 𝑏𝑝)𝛼

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = (𝑎𝑧 + 𝑏𝑟)𝛾 + (𝑎𝑦 + 𝑏𝑞)𝛽 + (𝑎𝑥 + 𝑏𝑝)𝛼

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Problem 4. Write a program to verify whether 𝑻:𝑹 ⟶ 𝑹𝟑 defined by 𝑇(𝑥) = [𝑥, 𝑥2, 𝑥3] is a linear

transformation or not.

 Program:

T(x):=[x,x^2,x^3]$

LHS:radcan(T(a*x+b*y))$

RHS:radcan(a*T(x)+b*T(y))$

print("Given function isT(x)=", T(x))$

print("T(ax+by)=",LHS)$

print("aT(x)+bT(y)=",RHS)$

if LHS=RHS then print("Given function is a Linear transformation")

else print("Given function is not a linear transformation")$

 31

Output:

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥) = [𝑥, 𝑥2, 𝑥3]

𝑇(𝑎𝑋 + 𝑏𝑌) = [𝑏𝑦 + 𝑎𝑥, 𝑏2𝑦2 + 2𝑎𝑏𝑥𝑦 + 𝑎2𝑥2, 𝑏3𝑦3 + 3𝑎𝑏2𝑥𝑦2 + 3𝑎2𝑏𝑥2𝑦 + 𝑎3𝑥3]

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [𝑏𝑦 + 𝑎𝑥, 𝑏𝑦2 + 𝑎𝑥2, 𝑏𝑦3 + 𝑎𝑥3]

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Problem 5. Write a program to verify whether 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑥, 𝑦, 𝑧] is

a linear transformation or not.

 Program:

T(x):=[0,x[2],x[3],x[4]]$

X:[w,x,y,z]$

Y:[p,q,r,s]$

LHS:radcan(T(a*X+b*Y))$

RHS:radcan(a*T(X)+b*T(Y))$

print("Given function isT(w,x,y,z)=", T(X))$

print("T(aX+bY)=",LHS)$

print("aT(X)+bT(Y)=",RHS)$

if LHS=RHS then print("Given function is a Linear transformation")

else print("Given function is not a linear transformation")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑥, 𝑦, 𝑧]

𝑇(𝑎𝑋 + 𝑏𝑌) = [0, 𝑎𝑥 + 𝑏𝑞, 𝑎𝑦 + 𝑏𝑟, 𝑎𝑧 + 𝑏𝑠]

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [0, 𝑎𝑥 + 𝑏𝑞, 𝑎𝑦 + 𝑏𝑟, 𝑎𝑧 + 𝑏𝑠]

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Problem 6. Write a program to verify whether 𝑻:𝑹𝟐⟶𝑹𝟐 defined by

 𝑇(𝑥, 𝑦) = [𝑥 cos(𝜃) − 𝑦 sin(𝜃) , 𝑥 sin(𝜃) + 𝑦 cos(𝜃)] is a linear transformation or not.

 Program:

T(x):=[x[1]*cos(θ)-x[2]*sin(θ),x[1]*sin(θ)+x[2]*cos(θ)]$

X:[x,y]$

Y:[p,q]$

LHS:radcan(T(a*X+b*Y))$

RHS:radcan(a*T(X)+b*T(Y))$

print("Given function isT(x,y)=", T(X))$

print("T(aX+bY)=",LHS)$

print("aT(X)+bT(Y)=",RHS)$

 32

if LHS=RHS then print("Given function is a Linear transformation")

else print("Given function is not a linear transformation")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑥 cos(𝜃) − 𝑦 sin(𝜃) , 𝑥 sin(𝜃) + 𝑦 cos(𝜃)]

𝑇(𝑎𝑋 + 𝑏𝑌) = [(−𝑎𝑦 − 𝑏𝑞) sin(𝜃) + (𝑎𝑥 + 𝑏𝑝) cos(𝜃) , (𝑎𝑥 + 𝑏𝑝) sin(𝜃) + (𝑎𝑦 + 𝑏𝑞) cos(𝜃)]

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [(−𝑎𝑦 − 𝑏𝑞) sin(𝜃) + (𝑎𝑥 + 𝑏𝑝) cos(𝜃) , (𝑎𝑥 + 𝑏𝑝) sin(𝜃) + (𝑎𝑦 + 𝑏𝑞) cos(𝜃)]

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Exercise:

Write a program to verify whether given function is a linear transformation or not.

1. 𝑻:𝑹𝟑⟶𝑹 defined by 𝑇(𝑥, 𝑦, 𝑧) = 𝑦 (Answer: linear transformation)

2. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑇(𝑥, 𝑦) = (𝑥, −𝑦) (Answer: linear transformation)

3. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧) (Answer: linear transformation)

4. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑦 + 𝑧) (Answer: linear transformation)

5. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 + 𝑧, 𝑥 + 𝑦 + 𝑧, 𝑥 + 𝑦 + 𝑧)

 (Answer: linear transformation)

6. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑇(𝑥, 𝑦, 𝑧) = (0, 0) (Answer: linear transformation)

7. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑇(𝑥, 𝑦) = (𝑥 + 1, 𝑦 + 2) (Answer: not a linear transformation)

8. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥𝑦, 𝑦𝑧) (Answer: not a linear transformation)

9. 𝑻:𝑹𝟐⟶𝑹𝟑 defined by 𝑇(𝑥, 𝑦) = (𝑥, 𝑦, 5) (Answer: not a linear transformation)

10. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 0) (Answer: linear transformation

 33

Program 5

Program to find the matrix of linear transformation.

Aim: To find the matrix of given linear transformation with respect to given bases using Mathematics

Softwares (FOSS).

Software: Maxima

Keys:

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Key Function

. (dot)

The operator . represents noncommutative multiplication

and scalar product. It is used for usual multiplication of

matrices.

* (asterisk) The operator * represents commutative multiplication

^ Exponentiation operator or power or index

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

L[i] Returns i-th element of the list L

' The single quote operator ' prevents evaluation.

makelist (expr, i, i_0, i_max)

Returns the list of elements obtained when ev

(expr, i=j) is applied to the elements j of the

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or

equal to |i_max|.

length (expr)
Returns the number of parts in the external (displayed)

form of expr

:= The function definition operator

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise

the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and

radicals.

linsolve (A,B)
Solves the list of simultaneous linear equations for the list

A of variables in list B. The expressions must each be

polynomials in the variables and may be equations.

transpose (M) Returns the transpose of M.

assoc (key, e)
assoc searches for key as the first part of an argument of e

and returns the second part of the first match, if any.

apply('matrix,L) Converting nested lists L to matrix

 34

Definitions and Formulae:

Matrix of a Linear Transformation: Let 𝑻:𝑼 → 𝑽 be a linear transformation where 𝑼 is a vector space

of dimension 𝒏 and 𝑽 is a vector space of dimension 𝒎 . Further, let 𝑩𝟏 = {𝒆𝟏, 𝒆𝟐, … . , 𝒆𝒏} and 𝑩𝟐 =

{𝒇𝟏, 𝒇𝟐, … . , 𝒇𝒎} be ordered bases of 𝑼 and 𝑽 respectively. Then we have,

𝑻(𝒆𝟏) = 𝒂𝟏𝟏𝒇𝟏 + 𝒂𝟏𝟐𝒇𝟐 + 𝒂𝟏𝟑𝒇𝟑 + … .+𝒂𝟏𝒎𝒇𝒎

𝑻(𝒆𝟐) = 𝒂𝟐𝟏𝒇𝟏 + 𝒂𝟐𝟐𝒇𝟐 + 𝒂𝟐𝟑𝒇𝟑 + … .+𝒂𝟐𝒎𝒇𝒎

⋮

𝑻(𝒆𝒏) = 𝒂𝒏𝟏𝒇𝟏 + 𝒂𝒏𝟐𝒇𝟐 + 𝒂𝟏𝟑𝒇𝟑 + … .+𝒂𝒏𝒎𝒇𝒎

These 𝒏 equations form an 𝒎× 𝒏 matrix which is transpose of coefficient matrix. In other words,

an 𝒎× 𝒏 matrix whose j-th column is the coefficients of j-th equation. This matrix is called the

matrix of linear transformation 𝑻 and is denoted by [𝑻]. Thus,

[𝑻] = [

𝑎11 𝑎21 . . . 𝑎𝑚1
𝑎12 𝑎22 . . . 𝑎𝑚2
⋮ ⋮ ⋱ ⋮
𝑎1𝑚 𝑎2𝑚 . . . 𝑎𝑛𝑚

]

Program:

Program to find the matrix of linear transformation 𝑻:𝑹𝒏 → 𝑹𝒎 with respect to standard bases

 𝐵1 = {𝒆𝟏, 𝒆𝟐, … . , 𝒆𝒏} and 𝐵2 = {𝒇𝟏, 𝒇𝟐, … . , 𝒇𝒎}

T(x):= define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

A: ordered standard basis of domain$

B: ordered standard basis of co-domain$

L:makelist(T(A[i]),i,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix of T w.r.t. given bases is [T]=",M)$

Note: Take X according to domain and standard basis A of domain and B of codomain as:

1. X:[x,y] if domain is 𝑅2 and A or B:[[1,0],[0,1]] for domain/codomain 𝑅2

2. X:[x,y,z] if domain is 𝑅3 and A or B: [[1,0,0],[0,1,0],[0,0,1]] for domain/codomain 𝑅3

3. X:[w,x,y,z] if domain is 𝑅4 and A or B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1] for

domain/codomain 𝑅4 so on.

 35

Program to find the matrix of linear transformation 𝑻:𝑹𝒏 → 𝑹𝒎 with respect to any bases

 𝐵1 = {𝒂𝟏, 𝒂, … . , 𝒂𝒏} and 𝐵2 = {𝒃𝟏, 𝒃𝟐, … . , 𝒃𝒎}

T(x):= define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

A: ordered list of given basis of domain$

B: ordered list of given basis of co-domain$

a:[α,β]$

K:makelist(linsolve(B.a-T(A[i]),a),i,1,length(A))$

L:makelist(makelist(assoc(a[i],K[j]),i,1,length(a)),j,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix of T w.r.t. given bases is [T]=",M)$

Note: 1. X:[x,y,z] and 𝑎:[α,β] is taken for illustration. Take X and 𝑎 according to

domain and codomain as:

1. X:[x,y] if domain is 𝑅2, a:[α,β] if co-domain is 𝑅2

2. X:[x,y,z] if domain is 𝑅3, a:[α,β ,γ] if co-domain is 𝑅3

3. X:[w,x,y,z] if domain is 𝑅4, a:[α,β ,γ, δ] if co-domain is 𝑅4 and so on.

Worked Examples:

 Problem 1. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟑⟶𝑹𝟐 defined by

𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛) with respect to standard bases.

Program:

T(x):=[x[1]+x[2],x[2]+x[3]]$

X:[x,y,z]$

A:[[1,0,0],[0,1,0],[0,0,1]]$

B:[[1,0],[0,1]]$

L:makelist(T(A[i]),i,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix of T w.r.t. given bases is [T]=",M)$

 36

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0,0], [0,1,0], [0,0,1]]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,0], [0,1]]

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
1 1 0
0 1 1

)

 Problem 2. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟐⟶𝑹𝟑 defined by

𝑻(𝒙, 𝒚) = (𝟐𝒚 − 𝒙, 𝒚, 𝟑𝒚 − 𝟑𝒙) with respect to standard bases.

Program:

T(x):=[2*x[2]-x[1],x[2],3*x[2]-3*x[1]]$

X:[x,y]$

A:[[1,0],[0,1]]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(A[i]),i,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix T w.r.t. given bases is [T]=",M)$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [2𝑦 − 𝑥, 𝑦, 3𝑦 − 3𝑥]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0], [0,1]]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,0,0], [0,1,0], [0,0,1]]

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
−1 2
0 1
−3 3

)

 37

 Problem 3. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐 defined by

𝑻(𝒙, 𝒚) = (𝒙 𝒄𝒐𝒔(𝜽) − 𝒚 𝒔𝒊𝒏(𝜽) , 𝒙 𝒔𝒊𝒏(𝜽) + 𝒚𝒄𝒐𝒔(𝜽)) with respect to standard bases.

Program:

T(x):=[x[1]*cos(θ)-x[2]*sin(θ), x[1]*sin(θ)+x[2]*cos(θ)]$

X:[x,y]$

A:[[1,0],[0,1]]$

B:[[1,0],[0,1]]$

L:makelist(T(A[i]),i,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix T w.r.t. given bases is [T]=",M)$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑥 cos(𝜃) − 𝑦 sin(𝜃) , 𝑥 sin(𝜃) + 𝑦 cos(𝜃)]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0], [0,1]]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,0], [0,1]]

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

)

 Problem 4. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 defined by

𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝟐𝒚 − 𝒛, 𝒚 + 𝒛, 𝒙 + 𝒚 − 𝟐𝒛) with respect to standard bases.

Program:

T(x):=[x[1]+2*x[2]-x[3], x[2]+x[3], x[1]+x[2]-2*x[3]]$

X:[x,y,z]$

A:[[1,0,0],[0,1,0],[0,0,1]]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(A[i]),i,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix T w.r.t. given bases is [T]=",M)$

 38

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [−𝑧 + 2𝑦 + 𝑥, 𝑧 + 𝑦,−2𝑧 + 𝑦 + 𝑥]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0,0], [0,1,0], [0,0,1]]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,0,0], [0,1,0], [0,0,1]]

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
1 2 −1
0 1 1
1 1 −2

)

 Problem 5. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟐⟶𝑹𝟑 defined by

𝑻(𝒙, 𝒚) = (𝟐𝒚 − 𝒙, 𝒚, 𝟑𝒚 − 𝟑𝒙) with respect to ordered bases of domain and co-domain

𝑩𝟏 = {(𝟏, 𝟏), (−𝟏, 𝟏)} and 𝑩𝟐 = {(𝟏, 𝟏, 𝟏), (𝟏,−𝟏, 𝟏), (𝟎, 𝟎, 𝟏)}, respectively.

Program:

T(x):=[2*x[2]-x[1],x[2],3*x[2]-3*x[1]]$

X:[x,y]$

A:[[1,1],[-1,1]]$

B:[[1,1,1],[1,-1,1],[0,0,1]]$

a:[α,β,γ]$

K:makelist(linsolve(B.a-T(A[i]),a),i,1,length(A))$

L:makelist(makelist(assoc(a[i],K[j]),i,1,length(a)),j,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix of T w.r.t. given bases is [T]=",M)$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [2𝑦 − 𝑥, 𝑦, 3𝑦 − 3𝑥]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,1], [−1,1]]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,1,1], [1, −1,1], [0,0,1]]

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
1 2
0 1
−1 3

)

Problem 6. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐 defined by

𝑻(𝒙, 𝒚) = (𝒙 + 𝟒𝒚, 𝟐𝒙 − 𝟑𝒚) with respect to ordered bases of domain and co-domain

𝑩𝟏 = {(𝟏, 𝟎), (𝟎, 𝟏)} and 𝑩𝟐 = {(𝟏, 𝟑), (𝟐, 𝟓)}, respectively.

 39

Program:

T(x):=[x[1]+4*x[2],2*x[1]-3*x[2]]$

X:[x,y]$

A:[[1,0],[0,1]]$

B:[[1,3],[2,5]]$

a:[α,β]$

K:makelist(linsolve(B.a-T(A[i]),a),i,1,length(A))$

L:makelist(makelist(assoc(a[i],K[j]),i,1,length(a)),j,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix of T w.r.t. given bases is [T]=",M)$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [4𝑦 + 𝑥, 2𝑥 − 3𝑦]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0], [0,1]]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,3], [2,5]]

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
−1 −26
1 15

)

Problem 7. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟒⟶𝑹𝟑 defined by

𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝒘 + 𝒙 + 𝟐𝒚 + 𝟑𝒛,𝒘 + 𝒙 − 𝒛,𝒘 + 𝟐𝒙) with respect to ordered bases

of domain and co-domain 𝑩𝟏 = {(𝟏, 𝟏, 𝟏, 𝟐), (𝟏, −𝟏, 𝟎, 𝟎), (𝟎, 𝟎, 𝟏, 𝟏), (𝟎, 𝟏, 𝟎, 𝟎)} and

𝑩𝟐 = {(𝟏, 𝟐, 𝟑), (𝟏, −𝟏, 𝟏), (𝟐, 𝟏, 𝟏)}, respectively.

 40

Program:

T(x):=[x[1]+x[2]+2*x[3]+3*x[4],x[1]+x[2]-x[4],x[1]+2*x[2]]$

X:[w,x,y,z]$

A:[[1,1,1,2],[1,-1,0,0],[0,0,1,1],[0,1,0,0]]$

B:[[1,2,3],[1,-1,1],[2,1,1]]$

a:[α,β,γ]$

K:makelist(linsolve(B.a-T(A[i]),a),i,1,length(A))$

L:makelist(makelist(assoc(a[i],K[j]),i,1,length(a)),j,1,length(A))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$

print("Basis of domain is B1=",A)$

print("Basis of co-domain is B2=",B)$

print("The Matrix of T w.r.t. given bases is [T]=",M)$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [3𝑧 + 2𝑦 + 𝑥 + 𝑤,−𝑧 + 𝑥 + 𝑤, 2𝑥 + 𝑤]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,1,1,2], [1, −1,0,0], [0,0,1,1], [0,1,0,0]]

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,2,3], [1, −1,1], [2,1,1]]

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] =

(

−
11

9
−
1

3
−
11

9

5

9
19

9
−
1

3

10

9

2

9
41

9

1

3

23

9

1

9)

 41

Exercise:

I. Write a program to find the matrix of given linear transformation with respect to standard bases.

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙,−𝒚) (Answer: (
1 0
0 −1

))

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒚,−𝒙, 𝒛) (Answer: (
0 1 0
−1 0 0
0 0 1

))

3. 𝑻:𝑹𝟐⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (−𝒙 + 𝟐𝒚, 𝒚,−𝟑𝒙 + 𝟑𝒚) (Answer: (
−1 2
0 1
−3 3

))

4. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒛 − 𝟐𝒚, 𝒙 + 𝟐𝒚 − 𝒛) (Answer: (
0 −2 1
1 2 −1

))

II. Write a program to find the matrix of given linear transformation with respect to given bases.

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙,−𝒚) with respect to bases

𝑩𝟏 = {(𝟏, 𝟏), (𝟏, 𝟎)} and 𝑩𝟐 = {(𝟐, 𝟑), (𝟒, 𝟓)} (Answer: (
−
9

2
−
5

2
5

2

3

2

))

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒚,−𝒙, 𝒛) with respect to bases

𝑩𝟏 = 𝑩𝟐 = {(𝟏, 𝟏, 𝟎), (𝟎, 𝟏, 𝟏), (𝟏, 𝟎, 𝟏)} (Answer: (
0 0 −1
−1 0 0
1 1 1

))

3. 𝑻:𝑹𝟐⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (−𝒙 + 𝟐𝒚, 𝒚,−𝟑𝒙 + 𝟑𝒚) with respect to bases

𝑩𝟏 = {(𝟏, 𝟐), (−𝟐, 𝟏)} and 𝑩𝟐 = {(−𝟏, 𝟎, 𝟐), (𝟏, 𝟐, 𝟑), (𝟏,−𝟏,−𝟏)} (Answer:

(

−
2

7

19

7
11

7

18

7
8

7

29

7)

)

4. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒛 − 𝟐𝒚, 𝒙 + 𝟐𝒚 − 𝒛) with respect to bases

𝑩𝟏 = {(𝟏, 𝟐, 𝟑), (𝟏,−𝟏, 𝟏), (𝟐, 𝟏, 𝟏)} and 𝑩𝟐 = {(𝟐, 𝟏), (−𝟑, 𝟒)} (Answer: (

2

11

6

11

5

11
5

11
−

7

11

7

11

))

 42

Program 6

Program to find the Eigenvalues and Eigenvectors

 of a given linear transformation.

Aim: To find the Eigenvalues and Eigenvectors of a given linear transformation / matrix using

Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

. (dot)
The operator . represents noncommutative multiplication and

scalar product. It is used for usual multiplication of matrices.

* (asterisk) The operator * represents commutative multiplication

^ Exponentiation operator or power or index

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

L[i] Returns i-th element of the list L

' The single quote operator ' prevents evaluation.

makelist (expr, i, i_0, i_max)

Returns the list of elements obtained when ev (expr, i=j) is

applied to the elements j of the sequence: i_0, i_0 + 1, i_0 + 2,

..., with |j| less than or equal to |i_max|.

length (expr)
Returns the number of parts in the external (displayed) form

of expr

:= The function definition operator

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise the

expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

transpose (M) Returns the transpose of M.

apply('matrix,L) Converting nested lists L to matrix

reverse (list)
Reverses the order of the members of the list (not the members

themselves)

table_form()

Displays a 2D list in a form that is more readable than the

output from Maxima’s default output routine. The input is a list

of one or more lists.

push (item, list)
push prepends the item item to the list list and returns a copy

of the new list.

eigenvalues (M) or eivals (M)

Returns a list of two lists containing the eigenvalues of the

matrix M. The first sublist of the return value is the list of

eigenvalues of the matrix, and the second sublist is the list of

the multiplicities of the eigenvalues in the corresponding

order.

 43

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Definitions and Formulae:

Eigen value and Eigen vector of a Linear transformation: Let 𝑽 be a vector space over a field

𝑭 and 𝑻: 𝑽 ⟶ 𝑽 be a linear transformation. A scalar 𝝀 ∈ 𝑭 is called an eigen value / characteristic

value of 𝑻 if 𝑻(𝒗) = 𝝀𝒗 for some non-zero vector 𝒗 ∈ 𝑽. Then 𝒗 is called an eigen vector /

characteristic vector corresponding to the eigen value 𝝀.

Similarly, a non-zero vector 𝒗 ∈ 𝑽 is called an eigen vector / characteristic vector of 𝑻 if 𝑻(𝒗) =

𝝀𝒗 for some scalar 𝝀 ∈ 𝑭. Then 𝝀 ∈ 𝑭 is called an eigen value / characteristic value corresponding

to the eigen vector 𝒗.

Properties of eigen values and eigen vectors:

1. The number of distinct eigen values of a linear transformation of a vector space of dimension n

is at most n.

2. An eigen value of a linear transformation may be repeated. The number of times an eigen value

is repeated is called its algebraic multiplicity.

3. A non-repeated eigen value can have only one linearly independent eigen vector.

4. A repeated eigen value can have one or more linearly independent eigen vectors. The number

of linearly independent eigen vectors of an eigen value is called its geometric multiplicity. For

any eigen value: geometric multiplicity ≤ algebraic multiplicity.

5. Geometric multiplicity of an eigen value is the dimension of its eigen space.

6. An eigen value is called defective if its geometric multiplicity < algebraic multiplicity

7. A linear transformation is diagonalizable if all its eigen values are non-defective. In other words,

all eigen values have their geometric multiplicity = their algebraic multiplicity. In this case

corresponding eigen vectors form a basis of the vector space.

8. 0 ∈ 𝑭, scalar zero can be an eigen value, but 𝟎 ∈ 𝑽, zero vector can never be an eigen vector.

eigenvectors (M) or eivects (M)

Computes eigenvectors of the matrix M. The return value is a

list of two elements. The first is a list of the eigenvalues

of M and a list of the multiplicities of the eigenvalues. The

second is a list of lists of eigenvectors. There is one list of

eigenvectors for each eigenvalue. There may be one or more

eigenvectors in each list.

 44

Program:

Program to find the eigen values and eigen vectors of a linear transformation 𝑻: 𝑹𝒏⟶ 𝑹𝒏

T(x):= define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

B:Standard basis of given vector space$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

table_form(reverse(N))$

Note: 1. Here X:[x,y,z] is taken for illustration purpose.

 Take X:[x,y] if domain is 𝑅2, X:[x,y,z] if domain is 𝑅3,

 X:[w,x,y,z] if domain is 𝑅4and so on.

 2. Take standard basis as: B:[[1,0],[0,1]] for 𝑅2, B:[[1,0,0],[0,1,0],[0,0,1]] for 𝑅3,

B: [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on.

Program to find the eigen values and eigen vectors of a matrix

M:matrix([R1],[R2],…[Rn])$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Matrix is M=",M)$

table_form(reverse(N))$

 45

Worked Examples:

Problem 1. Write a program to find the eigen values and eigen vectors of the linear transformation

 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟒𝒚 + 𝒙, 𝟑𝒚 + 𝟐𝒙)

Program:

T(x):=[x[1]+4*x[2],2*x[1]+3*x[2]]$

X:[x,y]$

B:[[1,0],[0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(x,y)=",T(X))$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [4𝑦 + 𝑥, 3𝑦 + 2𝑥]

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 5 1 {[1,1]}

𝜆2 = −1 1 {[1, −
1

2
]}

Problem 2. Write a program to find the eigen values and eigen vectors of the linear transformation

 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒚, 𝟎)

Program:

T(x):=[x[2],0]$

X:[x,y]$

B:[[1,0],[0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$

 46

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(x,y)=",T(X))$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑦, 0]

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 2 {[1,0]}

Problem 3. Write a program to find the eigen values and eigen vectors of the linear transformation

 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟐𝒙 + 𝟐𝒚 + 𝒛, 𝒙 + 𝟑𝒚 + 𝒛, 𝒙 + 𝟐𝒚 + 𝟐𝒛)

Program:

T(x):=[2*x[1]+2*x[2]+x[3],x[1]+3*x[2]+x[3],x[1]+2*x[2]+2*x[3]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑧 + 2𝑦 + 2𝑥, 𝑧 + 3𝑦 + 𝑥, 2𝑧 + 2𝑦 + 𝑥]

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 5 1 {[1,1,1]}
𝜆2 = 1 2 {[0,1, −2], [1,0, −1]}

 47

Problem 4. Write a program to find the eigen values and eigen vectors of the linear transformation

 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎, 𝒙, 𝒚, 𝒛)

Program:

T(x):=[0,x[2],x[3],x[4]]$

X:[w,x,y,z]$

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑥, 𝑦, 𝑧]

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 1 {[1,0,0,0]}
𝜆2 = 1 3 {[0,0,0,1], [0,0,1,0], [0,1,0,0]}

Problem 5. Write a program to find the eigen values and eigen vectors of the matrix 𝑀 = (
1 2 3
2 1 0
−1 0 1

)

Program:

M:matrix([1,2,3],[2,1,0],[-1,0,1])$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Matrix is M=",M)$

table_form(reverse(N))$

 48

Output:

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
1 2 3
2 1 0
−1 0 1

)

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝜆1 = 1 1 {[0,1, −
2

3
]}

𝜆2 = 2 1 {[1,2, −1]}
𝜆3 = 0 1 {[1, −2,1]}

Problem 6. Write a program to find the eigen values and eigen vectors of the matrix 𝑀 = (

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

)

Program:

M:matrix([0,1,0,0],[0,0,2,0],[0,0,0,3],[0,0,0,0])$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Matrix is M=",M)$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

)

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 4 {[1,0,0,0]}

 49

Exercise:

I. Write a program to find the eigen values and eigen vectors of the given linear transformation

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟑𝒙 + 𝒚, 𝟔𝒙 + 𝟐𝒚) (Answer: 𝜆1 = 0, 𝜆2 = 5)

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝟐𝒙 + 𝒚, 𝟑𝒙 + 𝟐𝒚) (Answer: 𝜆1 = 0, 𝜆2 = 1(twice repeated))

3. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟓𝒙 − 𝟔𝒚 − 𝟔𝒛,−𝒙 + 𝟒𝒚 + 𝟐𝒛, 𝟑𝒙 − 𝟔𝒚 − 𝟒𝒛)

(Answer: 𝜆1 = 1, 𝜆2 = 2 (twice repeated))

4. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 − 𝒚 + 𝟐𝒛, 𝒚, 𝒙 + 𝟐𝒚 + 𝒛)

(Answer: 𝜆1 = 1, 𝜆2 = 1 + √2, 𝜆3 = 1 − √2)

5. 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎,𝒘, 𝒙, 𝒚) (Answer: 𝜆1 = 0 (repeated 4 times))

II. Write a program to find the eigen values and eigen vectors of the given matrix

1. 𝑴 = (
1 2
0 3

) (Answer: 𝜆1 = 1, 𝜆2 = 3)

2. 𝑴 = (
1 0 0
0 2 0
0 0 3

) (Answer: 𝜆1 = 1, 𝜆2 = 2, 𝜆3 = 3)

3. 𝑴 = (
0 0 2
1 0 1
0 1 −2

) (Answer: 𝜆1 = −2, 𝜆2 = −1, 𝜆3 = 1)

4. 𝑴 = (
0 1 0
1 0 0
0 0 1

) (Answer: 𝜆1 = −1 , 𝜆2 = 1 (𝑡𝑤𝑖𝑐𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑))

5. 𝑴 = (

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

) (Answer: 𝜆1 = 1 (𝑡𝑤𝑖𝑐𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑), 𝜆2 = 0 (𝑡𝑤𝑖𝑐𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑))

 50 of 90

Program 7

Program on Rank – Nullity Theorem.

Aim: To verify Rank – Nullity theorem for given linear transformation / matrix using

Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Key Function

. (dot)

The operator . represents noncommutative multiplication

and scalar product. It is used for usual multiplication of

matrices.

* (asterisk) The operator * represents commutative multiplication

^ Exponentiation operator or power or index

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

L[i] Returns i-th element of the list L

' The single quote operator ' prevents evaluation.

and The logical conjunction operator

length (expr)
Returns the number of parts in the external (displayed)

form of expr

:= The function definition operator

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise

the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

transpose (M) Returns the transpose of M.

apply('matrix,L) Converting nested lists L to matrix

matrix_size (M)
Return a two-member list that gives the number of rows

and columns, respectively of the matrix M.

columnspace (M)
If M is a matrix, return span (v_1, ..., v_n), where the

set {v_1, ..., v_n} is a basis for the column space of M.

rank (M) Computes the rank of the matrix M.

nullspace (M)
If M is a matrix, return span (v_1, ..., v_n), where the

set {v_1, ..., v_n} is a basis for the nullspace of M

nullity (M)
If M is a matrix, return the dimension of the nullspace

of M.

 51 of 90

Definitions and Formulae:

Range / Range space and rank of a Linear transformation: Let 𝑼 and 𝑽 be vector spaces over a

field 𝑭 and 𝑻:𝑼 ⟶ 𝑽 be a linear transformation. The range of 𝑻 is the set 𝑹(𝑻) =

{𝑻(𝒖) ∈ 𝑽 |𝒖 ∈ 𝑼 }. Clearly, the range or range space 𝑹(𝑻) of 𝑻 is a subspace of codomain 𝑽 and

the dimension of 𝑹(𝑻) is called the rank of 𝑻 and is denoted by 𝒓𝒂𝒏𝒌(𝑻) or 𝒓(𝑻).

Kernel / Null space and nullity of a Linear transformation: Let 𝑼 and 𝑽 be vector spaces over a

field 𝑭 and 𝑻:𝑼 ⟶ 𝑽 be a linear transformation. The kernel / null space of 𝑻 is the set 𝑵(𝑻) =

{ 𝒖 ∈ 𝑼 | 𝑻(𝒖) = 𝟎 ∈ 𝑽}. Clearly, the kernel or null space 𝑵(𝑻) of 𝑻 is a subspace of domain 𝑼

and the dimension of 𝑵(𝑻) is called the nullity of 𝑻 and is denoted by 𝒏𝒖𝒍𝒍𝒊𝒕𝒚(𝑻) or 𝒏(𝑻).

Rank - Nullity Theorem for a linear transformation: Let 𝑼 and 𝑽 be vector spaces over a field 𝑭

and 𝑻:𝑼 ⟶ 𝑽 be a linear transformation. Suppose 𝑼 is finite dimensional of dimension 𝒏. Then,

𝒓𝒂𝒏𝒌(𝑻) + 𝒏𝒖𝒍𝒍𝒊𝒕𝒚 (𝑻) = 𝒅𝒊𝒎(𝑼) 𝒊. 𝒆. , 𝒓(𝑻) + 𝒏(𝑻) = 𝒏

i.e., the sum of rank and nullity of a linear transformation is equal to the dimension of its domain.

It is also called Rank-Nullity-Dimension theorem.

Rank - Nullity Theorem for a matrix: Let 𝑨 be an 𝒎× 𝒏 matrix. Then the number of columns of

𝑨 is the sum of the rank of 𝑨 and the nullity of 𝑨. That is,

𝒓𝒂𝒏𝒌(𝑨) + 𝒏𝒖𝒍𝒍𝒊𝒕𝒚 (𝑨) = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒍𝒖𝒎𝒏𝒔 𝒊. 𝒆., 𝒓(𝑻) + 𝒏(𝑻) = 𝒏

Program:

Program to verify rank-nullity theorem for a matrix M

M:matrix([R1],[R2],[R3],…[Rm])$

n:matrix_size (M)[2]$

print("Given Matrix is M=",M)$

print("Range Space of M=",columnspace(M))$

print("Null Space of M=",nullspace(M))$

print("Rank of M=",rank(M))$

print("Nullity of M=",nullity(M))$

print("r(M)+n(M)=",rank(M)+nullity(M))$

print("Number of columns of M=",n)$

if rank(M)+nullity(M)=n then

print("Rank + Nullity = Number of columns") and

print("Rank - Nullity theorem is verified") else

print("Rank + Nullity ≠ Number of columns") and

print("Rank - Nullity theorem is not verified")$

 52 of 90

Program to verify rank-nullity theorem for a linear transformation 𝑻:𝑼 ⟶ 𝑽

T(x):= define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

B: Standard ordered basis of domain$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

n:matrix_size (M)[2]$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Range Space of T=",columnspace(M))$

print("Null Space of T=",nullspace(M))$

print("Rank of T=",rank(M))$

print("Nullity of T=",nullity(M))$

print("r(T)+n(T)=",rank(M)+nullity(M))$

print("Dimension of Domain=",n)$

if rank(M)+nullity(M)=n then

print("Rank + Nullity = Dimension of domain") and

print("Rank - Nullity theorem is verified") else

print("Rank + Nullity ≠ Dimension of Domain") and

print("Rank - Nullity theorem is not verified")$

Note: 1. In the above program X:[x,y,z] is taken for illustration.

 Take X:[x,y] if 𝑈 = 𝑅2, X:[x,y,z] if 𝑈 = 𝑅3, X:[w,x,y,z] if 𝑈 = 𝑅4 and so on.

2. Take standard bases as:

 [[1,0],[0,1]] for 𝑅2

 [[1,0,0],[0,1,0],[0,0,1]] for 𝑅3

 [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on.

 Page 53 of 90

Worked Examples:

 Problem 1. Write a program to verify rank-nullity theorem for a linear transformation 𝑻:𝑹𝟑⟶𝑹𝟐

defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛)

Program:

T(x):=[x[1]+x[2], x[2]+x[3]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

n:matrix_size (M)[2]$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Range Space of T=",columnspace(M))$

print("Null Space of T=",nullspace(M))$

print("Rank of T=",rank(M))$

print("Nullity of T=",nullity(M))$

print("r(T)+n(T)=",rank(M)+nullity(M))$

print("Dimension of Domain=",n)$

if rank(M)+nullity(M)=n then

print("Rank + Nullity = Dimension of domain") and

print("Rank - Nullity theorem is verified") else

print("Rank + Nullity ≠ Dimension of Domain") and

print("Rank - Nullity theorem is not verified")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦]

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
1
0
) , (

1
1
))

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
−1
1
−1
))

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑇 = 2

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 1

𝑟(𝑇) + 𝑛(𝑇) = 3

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛 = 3

𝑅𝑎𝑛𝑘 + 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛

𝑅𝑎𝑛𝑘 − 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

 54 of 90

 Problem 2. Write a program to verify rank-nullity theorem for a linear transformation 𝑻:𝑹𝟑⟶𝑹𝟒

defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟎, 𝒙 + 𝒚 + 𝒛, 𝒚 − 𝒛, 𝟐𝒙 + 𝟒𝒛)

Program:

T(x):=[0,x[1]+x[2]+x[3], x[2]-x[3], 2*x[1]+4*x[3]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

n:matrix_size (M)[2]$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Range Space of T=",columnspace(M))$

print("Null Space of T=",nullspace(M))$

print("Rank of T=",rank(M))$

print("Nullity of T=",nullity(M))$

print("r(T)+n(T)=",rank(M)+nullity(M))$

print("Dimension of Domain=",n)$

if rank(M)+nullity(M)=n then

print("Rank + Nullity = Dimension of domain") and

print("Rank - Nullity theorem is verified") else

print("Rank + Nullity ≠ Dimension of Domain") and

print("Rank - Nullity theorem is not verified")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [0, 𝑧 + 𝑦 + 𝑥, 𝑦 − 𝑧, 4𝑧 + 2𝑥]

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span

(

(

0
1
0
2

) ,(

0
1
1
0

)

)

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
−2
1
1
))

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑇 = 2

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 1

𝑟(𝑇) + 𝑛(𝑇) = 3

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛 = 3

𝑅𝑎𝑛𝑘 + 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛

𝑅𝑎𝑛𝑘 − 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

 55 of 90

 Problem 3. Write a program to verify rank-nullity theorem for a linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑

defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒙 − 𝒚, 𝟐𝒙 + 𝒛)

Program:

T(x):=[0,x[1]+x[2]+x[3], x[2]-x[3], 2*x[1]+4*x[3]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

n:matrix_size (M)[2]$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Range Space of T=",columnspace(M))$

print("Null Space of T=",nullspace(M))$

print("Rank of T=",rank(M))$

print("Nullity of T=",nullity(M))$

print("r(T)+n(T)=",rank(M)+nullity(M))$

print("Dimension of Domain=",n)$

if rank(M)+nullity(M)=n then

print("Rank + Nullity = Dimension of domain") and

print("Rank - Nullity theorem is verified") else

print("Rank + Nullity ≠ Dimension of Domain") and

print("Rank - Nullity theorem is not verified")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑥 − 𝑦, 𝑧 + 2𝑥]

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
0
0
1
) , (

1
−1
0
) , (

1
1
2
))

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span(?)

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑇 = 3

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0

𝑟(𝑇) + 𝑛(𝑇) = 3

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛 = 3

𝑅𝑎𝑛𝑘 + 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛

𝑅𝑎𝑛𝑘 − 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

Note: span(?) means span () i.e., span of the empty set and span(?) = span(𝜙) = {0}

 56 of 90

Problem 4. Write a program to verify rank-nullity theorem for a linear transformation 𝑻:𝑹𝟐⟶𝑹𝟑

defined by 𝑻(𝒙, 𝒚) = (−𝒙 + 𝟐𝒚, 𝒚,−𝟑𝒙 + 𝟑𝒚)

Program:

T(x):=[-x[1]+2*x[2] ,x[2],-3*x[1]+3*x[2]]$

X:[x,y]$

B:[[1,0],[0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

n:matrix_size (M)[2]$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Range Space of T=",columnspace(M))$

print("Null Space of T=",nullspace(M))$

print("Rank of T=",rank(M))$

print("Nullity of T=",nullity(M))$

print("r(T)+n(T)=",rank(M)+nullity(M))$

print("Dimension of Domain=",n)$

if rank(M)+nullity(M)=n then

print("Rank + Nullity = Dimension of domain") and

print("Rank - Nullity theorem is verified") else

print("Rank + Nullity ≠ Dimension of Domain") and

print("Rank - Nullity theorem is not verified")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [2𝑦 − 𝑥, 𝑦, 3𝑦 − 3𝑥]

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
−1
0
−3
) , (

2
1
3
))

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span(?)

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑇 = 2

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0

𝑟(𝑇) + 𝑛(𝑇) = 2

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛 = 2

𝑅𝑎𝑛𝑘 + 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛

𝑅𝑎𝑛𝑘 − 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

Note: span(?) means span () i.e., span of the empty set and span(?) = span(𝜙) = {0}

 Page 57 of 90

Problem 5. Write a program to verify rank-nullity theorem for the matrix 𝑀 = (

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

)

Program:

M:matrix([1,1,0,0],[-1,-1,0,0],[-2,-2,2,1],[1,1,-1,0])$

n:matrix_size (M)[2]$

print("Given Matrix is M=",M)$

print("Range Space of M=",columnspace(M))$

print("Null Space of M=",nullspace(M))$

print("Rank of M=",rank(M))$

print("Nullity of M=",nullity(M))$

print("r(M)+n(M)=",rank(M)+nullity(M))$

print("Number of columns of M=",n)$

if rank(M)+nullity(M)=n then

print("Rank + Nullity = Number of columns") and

print("Rank - Nullity theorem is verified") else

print("Rank + Nullity ≠ Number of columns") and

print("Rank - Nullity theorem is not verified")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

)

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑀 = span

(

(

0
0
1
0

) , (

0
0
2
−1

) ,(

1
−1
−2
1

)

)

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑀 = span

(

(

1
−1
0
0

)

)

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑀 = 3

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑀 = 1

𝑟(𝑀) + 𝑛(𝑀) = 4

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝑀 = 4

𝑅𝑎𝑛𝑘 + 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑅𝑎𝑛𝑘 − 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑

 58

Exercise:

I. Write a program to verify rank-nullity theorem for the following linear transformations

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟑𝒙 + 𝒚, 𝟔𝒙 + 𝟐𝒚) (Ans: Rank-Nullity Theorem is verified)

2. 𝑻:𝑹𝟐⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (𝒙, 𝒙 + 𝒚, 𝒚) (Ans: Rank-Nullity Theorem is verified)

3. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟑𝒙 − 𝟐𝒚 + 𝒛, 𝒙 − 𝟑𝒚 − 𝟐𝒛)

(Ans: Rank-Nullity Theorem is verified)

4. 𝑻:𝑹𝟑⟶𝑹𝟒 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒙 + 𝒚, 𝒙 + 𝒚 + 𝒛, 𝒛)
(Ans: Rank-Nullity Theorem is verified)

5. 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎,𝒘, 𝒙, 𝒚) (Ans: Rank-Nullity Theorem is verified)

II. Write a program to verify rank-nullity theorem for the following matrices

1. 𝑴 = (
1 2
0 3

) (Ans: Rank-Nullity Theorem is verified)

2. 𝑴 = (
0 1 0 4 5
0 1 0 4 5

) (Ans: Rank-Nullity Theorem is verified)

3. 𝑴 = (

1 1
2 2
4 4
5 5

) (Ans: Rank-Nullity Theorem is verified)

4. 𝑴 = (
1 1 0
0 1 1
1 1 1

) (Ans: Rank-Nullity Theorem is verified)

5. 𝑴 = (

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

) (Ans: Rank-Nullity Theorem is verified)

 59

Program 8

Program to verify if the given linear transformation is

 singular/non-singular.

Aim: To verify if the given linear transformation is singular / non-singular using

Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Key Function

* (asterisk) The operator * represents commutative multiplication

^ Exponentiation operator or power or index

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

L[i] Returns i-th element of the list L

' The single quote operator ' prevents evaluation.

and The logical conjunction operator

length (expr) Returns the number of parts in the external (displayed) form of expr

:= The function definition operator

if cond_1 then expr_1

 else expr_0

evaluates to expr_1 if cond_1 evaluates to true, otherwise the

expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and displays

expr

transpose (M) Returns the transpose of M.

apply('matrix,L) Converting nested lists L to matrix

columnspace (M)
If M is a matrix, return span (v_1, ..., v_n), where the set {v_1, ...,

v_n} is a basis for the column space of M.

rank (M) Computes the rank of the matrix M.

nullspace (M)
If M is a matrix, return span (v_1, ..., v_n), where the set {v_1, ...,

v_n} is a basis for the nullspace of M

nullity (M) If M is a matrix, return the dimension of the nullspace of M.

 60

Definitions and Formulae:

Non-Singular Linear Transformation: Let 𝑼 and 𝑽 be vector spaces over a field 𝑭 and 𝑻:𝑼 ⟶

𝑽 be a linear transformation. Then 𝑻 is called a non-singular transformation if 𝑻(𝒖) = 𝟎 ∈ 𝑽 ⟹

𝒖 = 𝟎 ∈ 𝑼. In other words, 𝑻 is non-singular if it maps no non-zero vector of domain to zero vector

of codomain. The only vector that is mapped to zero vector of codomain is the zero vector of

domain. Clearly, 𝑻 is non-singular if and only if 𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑻 = 𝑵(𝑻) = {𝟎} and

𝒏𝒖𝒍𝒍𝒊𝒕𝒚(𝑻) = 𝟎. As a result, Non-singular transformation is one-one.

Singular Linear Transformation: Let 𝑼 and 𝑽 be vector spaces over a field 𝑭 and 𝑻:𝑼 ⟶ 𝑽 be

a linear transformation. Then 𝑻 is called a singular transformation if ∃ 𝒖 ≠ 𝟎 ∈ 𝑼 such that 𝑻(𝒖) =

𝟎 ∈ 𝑽. In other words, 𝑻 is singular if it maps at least one non-zero vector of domain to the zero

vector of codomain. Clearly, 𝑻 is singular if and only if 𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑻 = 𝑵(𝑻) ≠ {𝟎} and

𝒏𝒖𝒍𝒍𝒊𝒕𝒚(𝑻) ≥ 𝟏.

Program:

Program to verify if the given linear transformation is singular / non-singular.

T(x):= define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

B:Standard ordered basis of domain$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Nullity of T=",nullity(M))$

if nullity(M)=0 then

print("Given linear transformation is Non Singular") else

print("Given linear transformation is Singular")$

Note: 1. In the above program X:[x,y,z] is taken for illustration.

 Take X:[x,y] if 𝑈 = 𝑅2, X:[x,y,z] if 𝑈 = 𝑅3, X:[w,x,y,z] if 𝑈 = 𝑅4 and so on.

2. Take standard basis as: [[1,0],[0,1]] for 𝑅2, [[1,0,0],[0,1,0],[0,0,1]] for 𝑅3

 [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on.

 61

Worked Examples:

Problem 1. Write a program to verify whether the linear transformation 𝑻:𝑹𝟐⟶𝑹𝟑

 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝒚, 𝒙 − 𝒚, 𝒚) is singular / non-singular

Program:

T(x):=[x[1]+x[2],x[1]-x[2],x[2]]$

X:[x,y]$

B:[[1,0],[0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Nullity of T=",nullity(M))$

if nullity(M)=0 then

print("Given linear transformation is Non Singular") else

print("Given linear transformation is Singular")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑦 + 𝑥, 𝑥 − 𝑦, 𝑦]

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟

Problem 2. Write a program to verify whether the linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐

 defined by 𝑻(𝒙, 𝒚) = (𝟎, 𝟎) is singular / non-singular

Program:

T(x):=[0, 0]$

X:[x,y]$

B:[[1,0],[0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Nullity of T=",nullity(M))$

if nullity(M)=0 then

print("Given linear transformation is Non Singular") else

print("Given linear transformation is Singular")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [0, 0]

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 2

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟

 62

Problem 3. Write a program to verify whether the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑

 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛) is singular / non-singular

Program:

T(x):=[x[1],x[2],x[3]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Nullity of T=",nullity(M))$

if nullity(M)=0 then

print("Given linear transformation is Non Singular") else

print("Given linear transformation is Singular")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑥, 𝑦, 𝑧]

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟

Problem 4. Write a program to verify whether the linear transformation 𝑻:𝑹𝟒⟶𝑹𝟒

 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎, 𝒙, 𝒚, 𝒛) is singular / non-singular

Program:

T(x):=[0,x[2],x[3],x[4]]$

X:[w,x,y,z]$

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$

print("Nullity of T=",nullity(M))$

if nullity(M)=0 then

print("Given linear transformation is Non Singular") else

print("Given linear transformation is Singular")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑥, 𝑦, 𝑧]

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 1

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟

 63

Problem 5. Write a program to verify whether the linear transformation 𝑻:𝑹𝟒⟶𝑹𝟐

 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝒘 + 𝒙, 𝒚 + 𝒛) is singular / non-singular

Program:

T(x):=[x[1]+x[2],x[3]+x[4]]$

X:[w,x,y,z]$

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$

print("Nullity of T=",nullity(M))$

if nullity(M)=0 then

print("Given linear transformation is Non Singular") else

print("Given linear transformation is Singular")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [𝑥 + 𝑤, 𝑧 + 𝑦]

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 2

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟

Problem 6. Write a program to verify whether the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑

 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛, 𝒛 + 𝒙) is singular / non-singular

Program:

T(x):=[x[1]+x[2], x[2]+x[3], x[3]+x[1]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Nullity of T=",nullity(M))$

if nullity(M)=0 then

print("Given linear transformation is Non Singular") else

print("Given linear transformation is Singular")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦, 𝑧 + 𝑥]

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟

 64

Exercise:

Write a program to verify if the given linear transformation is singular / non-singular

1. 𝑻:𝑹𝟐 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙, 𝒚)

(Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

2. 𝑻:𝑹𝟒 ⟶ 𝑹𝟑 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟐𝒘, 𝒙, 𝒚 + 𝒛)

(Answer: 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

3. 𝑻:𝑹𝟑 ⟶ 𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒛,−𝒙 + 𝟐𝒚 + 𝒛, 𝒚 + 𝒛)

(Answer: 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

4. 𝑻:𝑹𝟑 ⟶ 𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (−𝟐𝒛 + 𝒚 + 𝒙, 𝒛 + 𝟐𝒚 + 𝒙,−𝟑𝒛 + 𝟐𝒚 + 𝟐𝒙)

 (Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

5. 𝑻:𝑹𝟑 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛)

(Answer: 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

6. 𝑻:𝑹𝟐 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝒚, 𝒙 − 𝒚)

(Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

7. 𝑻:𝑹𝟐 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒚, 𝒙)

(Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

8. 𝑻:𝑹𝟐 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝟐𝒚, 𝟎)

(Answer: 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

9. 𝑻:𝑹𝟐 ⟶ 𝑹 defined by 𝑻(𝒙, 𝒚) = 𝒙 + 𝒚

(Answer: 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

10. 𝑻:𝑹𝟐 ⟶ 𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (𝒙, 𝒚, 𝒙 + 𝒚)

(Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟)

 65

Program 9

Program to find the minimal polynomial of given linear transformation.

Aim: To find the minimal polynomial of given linear transformation / matrix using

Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Key Function

load("diag") Loads Package diag.

* (asterisk) The operator * represents commutative multiplication

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

L[i] Returns i-th element of the list L

' The single quote operator ' prevents evaluation.

and The logical conjunction operator

length (expr)
Returns the number of parts in the external (displayed) form

of expr

:= The function definition operator

if cond_1 then expr_1

 else expr_0

evaluates to expr_1 if cond_1 evaluates to true, otherwise the

expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and displays

expr

transpose (M) Returns the transpose of M.

apply('matrix,L) Converting nested lists L to matrix

 expand (expr) Expand expression expr.

 factor (expr)
Factors the expression expr, containing any number of variables

or functions, into factors irreducible over the integers

charpoly (M, x)
Returns the characteristic polynomial for the matrix M with

respect to variable x.

minimalPoly (l)
Returns the minimal polynomial of the matrix whose Jordan

form is described by the list l.

jordan (mat)
Returns the Jordan form of matrix mat, encoded as a list in a

particular format.

file:///C:/maxima-5.46.0/share/maxima/5.46.0/doc/html/maxima_single .html%23Category_003a-Package-diag

 66

Definitions and Formulae:

Characteristic Polynomial of a matrix / linear transformation: Let 𝑀 be an 𝑛 × 𝑛 matrix. 𝑓(𝜆) =

det(𝑀 − 𝜆𝐼) is a polynomial in 𝜆 of degree 𝑛 and is called the Characteristic Polynomial of 𝑀 and

𝑓(𝜆) = 0 is called the Characteristic Equation. By Cayley-Hamilton Theorem, every square matrix

satisfies its characteristic equation i.e., 𝑓(𝑀) = 0. The characteristic polynomial /equation of a linear

transformation 𝑇:𝑈 → 𝑈 is the characteristic polynomial/equation of its associated matrix. The roots

of the characteristic equation of a matrix/linear transformation are precisely its eigen values.

Monic Polynomial: A monic polynomial is a non-zero univariate polynomial (that is, a polynomial in

a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal

to 1. Thus, 𝑓(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛−2𝑥
𝑛−2 +⋯+ 𝑎1𝑥 + 𝑎0 will be a monic polynomial of

degree 𝑛 if 𝑎𝑛 = 1. For example, 𝑥2 + 2𝑥 + 1 and 𝑥3 − 4𝑥2 + 2𝑥 + 1 are monic polynomials but

2𝑥2 + 3𝑥 + 1 is not a monic polynomial.

Minimal Polynomial of a matrix / linear transformation: A monic polynomial of the smallest degree

which is satisfied by the given matrix or linear transformation is called its minimal polynomial. A

polynomial 𝒇(𝒙) is the minimal polynomial of the matrix 𝑀 / Linear transformation 𝑇 then:

1. 𝑓(𝑥) is monic polynomial

2. 𝑓(𝑀) = 0 / 𝑓(𝑇) = 0

3. If 𝑔(𝑀) = 0 / 𝑔(𝑇) = 0 then 𝑑𝑒𝑔 𝑓(𝑥) ≤ deg 𝑔(𝑥)

4. If 𝑑𝑒𝑔 ℎ(𝑥) < deg 𝑓(𝑥) then ℎ(𝑀) ≠ 0 / ℎ(𝑇) ≠ 0

Program:

Program to find the characteristic polynomial and the minimal polynomial of a matrix M

load("diag")$

M:matrix([R1],[R2],[R3],…,[Rn])$

C:factor(charpoly(M,x))$

P:minimalPoly(jordan(M))$

print("Given Matrix is M=",M)$

print("Characteristic Polynomial of M=",C,"=",expand(C))$

print("Minimal Polynomial of M=",P,"=",expand(P))$

Note: sometimes C:factor(-charpoly(M,x))$ is used to get positive leading coefficient

https://en.wikipedia.org/wiki/Univariate_polynomial
https://en.wikipedia.org/wiki/Leading_coefficient

 67

Program to the characteristic polynomial and the minimal polynomial of

a linear transformation 𝑇:𝑈 → 𝑈

load("diag")$

T(x):= define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

B: Standard ordered basis of domain$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

C:factor(-charpoly(M,x))$

P:minimalPoly(jordan(M))$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Characteristic Polynomial of T=",C,"=",expand(C))$

print("Minimal Polynomial of T=",P,"=",expand(P))$

Note: 1. In the above program X:[x,y,z] is taken for illustration.

 Take X:[x,y] if 𝑈 = 𝑅2, X:[x,y,z] if 𝑈 = 𝑅3, X:[w,x,y,z] if 𝑈 = 𝑅4 and so on.

2. Take standard basis as: [[1,0],[0,1]] for 𝑅2, [[1,0,0],[0,1,0],[0,0,1]] for 𝑅3

 [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on.

Worked Examples:

Problem 1. Write a program to find the characteristic polynomial and the minimal polynomial of

the matrix 𝑀 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)

Program:

load("diag")$

M:matrix([0,1,0,1],[1,0,1,0],[0,1,0,1],[1,0,1,0])$

C:factor(charpoly(M,x))$

P:minimalPoly(jordan(M))$

print("Given Matrix is M=",M)$

print("Characteristic Polynomial of M=",C,"=",expand(C))$

print("Minimal Polynomial of M=",P,"=",expand(P))$

 68

Output:

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑀 = (𝑥 − 2)𝑥2(𝑥 + 2) = 𝑥4 − 4𝑥2

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑀 = (𝑥 − 2)𝑥(𝑥 + 2) = 𝑥3 − 4𝑥

Problem 2. Write a program to find the characteristic polynomial and the minimal polynomial of

the matrix 𝑀 = (
2 1 1
−1 2 −1
−1 1 3

)

Program:

load("diag")$

M:matrix([2,1,1],[-1,2,-1],[-1,1,3])$

C:factor(-charpoly(M,x))$

P:radcan(minimalPoly(jordan(M)))$

print("Given Matrix is M=",M)$

print("Characteristic Polynomial of M=",C)$

print("Minimal Polynomial of M=",P)$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
2 1 1
−1 2 −1
−1 1 3

)

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑀 = 𝑥3 − 7𝑥2 + 19𝑥 − 19

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑀 = 𝑥3 − 7𝑥2 + 19𝑥 − 19

Problem 3. Write a program to find the characteristic polynomial and the minimal polynomial of

the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛, 𝒛 + 𝒙)

Program:

load("diag")$

T(x):=[x[1]+x[2],x[2]+x[3],x[3]+x[1]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

 69

C:factor(-charpoly(M,x))$

P:minimalPoly(jordan(M))$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Characteristic Polynomial of T=",C,"=",expand(C))$

print("Minimal Polynomial of T=",P,"=",expand(P))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦, 𝑧 + 𝑥]

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 2)(𝑥2 − 𝑥 + 1) = 𝑥3 − 3𝑥2 + 3𝑥 − 2

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 2) (𝑥 +
√3%𝑖 − 1

2
)(𝑥 −

√3%𝑖 + 1

2
) = 𝑥3 − 3𝑥2 + 3𝑥 − 2

Problem 4. Write a program to find the characteristic polynomial and the minimal polynomial of

the linear transformation 𝑻:𝑹𝟒⟶𝑹𝟒 defined by

 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝒘,𝒘 + 𝒙,𝒘 + 𝒙 + +𝒚,𝒘 + 𝒙 + 𝒚 + 𝒛)

Program:

load("diag")$

T(x):=[x[1],x[1]+x[2],x[1]+x[2]+x[3],x[1]+x[2]+x[3]+x[4]]$

X:[w,x,y,z]$

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

C:factor(charpoly(M,x))$

P:minimalPoly(jordan(M))$

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$

print("Characteristic Polynomial of T=",C,"=",expand(C))$

print("Minimal Polynomial of T=",P,"=",expand(P))$

 70

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [𝑤, 𝑥 + 𝑤, 𝑦 + 𝑥 + 𝑤, 𝑧 + 𝑦 + 𝑥 + 𝑤]

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 1)4 = 𝑥4 − 4𝑥3 + 6𝑥2 − 4𝑥 + 1

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 1)4 = 𝑥4 − 4𝑥3 + 6𝑥2 − 4𝑥 + 1

Problem 5. Write a program to find the characteristic polynomial and the minimal polynomial of

the linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙,−𝒚)

Program:

load("diag")$

T(x):=[x[1],-x[2]]$

X:[x,y]$

B:[[1,0],[0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

C:factor(charpoly(M,x))$

P:minimalPoly(jordan(M))$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Characteristic Polynomial of T=",C,"=",expand(C))$

print("Minimal Polynomial of T=",P,"=",expand(P))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑥,−𝑦]

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 1)(𝑥 + 1) = 𝑥2 − 1

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 1)(𝑥 + 1) = 𝑥2 − 1

 71

Exercise:

I. Write a program to find the characteristic polynomial and the minimal polynomial of the matrices:

1. 𝑀 = (
3 1 −1
2 2 −1
2 2 0

) (Answer: 𝑥3 − 5𝑥2 + 8𝑥 − 4 and 𝑥3 − 5𝑥2 + 8𝑥 − 4)

2. 𝑀 = (
5 −6 −6
−1 4 2
3 −6 −4

) (Answer: 𝑥3 − 5𝑥2 + 8𝑥 − 4 and 𝑥2 − 3𝑥 + 2)

3. 𝑀 = (
3 −1 0
0 2 0
1 −1 2

) (Answer: 𝑥3 − 7𝑥2 + 16𝑥 − 12 and 𝑥2 − 5𝑥 + 6)

4. 𝑀 = (
2 5
6 1

) (Answer: 𝑥2 − 3𝑥 − 28 and 𝑥2 − 3𝑥 − 28)

II. Write a program to find the characteristic polynomial and the minimal polynomial of the

linear transformations:

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟑𝒙 + 𝒚, 𝟔𝒙 + 𝟐𝒚)

(Answer: 𝑥2 − 1 and 𝑥2 − 1)

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛)

(Answer: 𝑥3 − 3𝑥2 + 3𝑥 − 1 and 𝑥 − 1)

3. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (𝟎, 𝟎, 𝟎)

(Answer: 𝑥3 and 𝑥)

4. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟎, 𝒙, 𝒚)

(Answer: 𝑥3 and 𝑥3)

5. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟒𝒙 + 𝒛, 𝟐𝒙 + 𝟑𝒚 + 𝟐𝒛, 𝒙 + 𝟒𝒛)

(Answer: 𝑥3 − 11𝑥2 + 39𝑥 − 45 and 𝑥2 − 8𝑥 + 15)

 72

Program 10

Program to find the algebraic multiplicity and geometric multiplicity

of the Eigenvalues of the given linear transformation.

Aim: To find the algebraic multiplicity and geometric multiplicity of the Eigenvalues

of the given linear transformation /matrix using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

* (asterisk) The operator * represents commutative multiplication

^ Exponentiation operator or power or index

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

L[i] Returns i-th element of the list L

' The single quote operator ' prevents evaluation.

makelist (expr, i, i_0, i_max)

Returns the list of elements obtained when ev

(expr, i=j) is applied to the elements j of the

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or

equal to |i_max|.

length (expr)
Returns the number of parts in the external (displayed)

form of expr

:= The function definition operator

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise

the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

transpose (M) Returns the transpose of M.

apply('matrix,L) Converting nested lists L to matrix

reverse (list)
Reverses the order of the members of the list (not the

members themselves)

table_form()

Displays a 2D list in a form that is more readable than the

output from Maxima’s default output routine. The input is

a list of one or more lists.

push (item, list)
push prepends the item item to the list list and returns a

copy of the new list.

eigenvalues (M) or eivals (M)

Returns a list of two lists containing the eigenvalues of

the matrix M. The first sublist of the return value is the

list of eigenvalues of the matrix, and the second sublist is

the list of the multiplicities of the eigenvalues in the

corresponding order.

 73

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Definitions and Formulae:

Eigen value and Eigen vector of a Linear transformation: Let 𝑽 be a vector space over a field

𝑭 and 𝑻: 𝑽 ⟶ 𝑽 be a linear transformation / linear operator. A scalar 𝝀 ∈ 𝑭 is called an eigen value

/ characteristic value of 𝑻 if 𝑻(𝒗) = 𝝀𝒗 for some non-zero vector 𝒗 ∈ 𝑽. Then 𝒗 is called an eigen

vector / characteristic vector corresponding to the eigen value 𝝀.

Similarly, a non-zero vector 𝒗 ∈ 𝑽 is called an eigen vector / characteristic vector of 𝑻 if 𝑻(𝒗) =

𝝀𝒗 for some scalar 𝝀 ∈ 𝑭. Then 𝝀 ∈ 𝑭 is called an eigen value / characteristic value corresponding

to the eigen vector 𝒗.

Algebraic Multiplicity of an Eigen Value: An eigen value of a linear transformation may be

repeated. The number of times an eigen value is repeated is called its algebraic multiplicity. For a

non-repeated eigen value, algebraic multiplicity is 1. For twice repeated eigen value, algebraic

multiplicity is 2 and so on. Using characteristic polynomial, algebraic multiplicity of an eigen

value 𝜆 is the largest integer 𝑘 for which (𝑥 − 𝜆)𝑘 is a factor of the characteristic polynomial 𝑓(𝑥).

Geometric Multiplicity of an Eigen Value: The number of linearly independent eigen vectors

corresponding to an eigen value is called its geometric multiplicity. In fact, geometric multiplicity

is the dimension of eigen space of an eigen value. For a non-repeated eigen value, geometric

multiplicity is 1. For twice repeated eigen value, geometric multiplicity may be 1 or 2 depending

on the dimension of its eigen space.

Relation between algebraic and geometric multiplicities of an eigen value: For any eigen value

𝒈𝒆𝒐𝒎𝒆𝒕𝒓𝒊𝒄 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚 ≤ 𝒂𝒍𝒈𝒆𝒃𝒓𝒂𝒊𝒄 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚

eigenvectors (M) or eivects (M)

Computes eigenvectors of the matrix M. The return value

is a list of two elements. The first is a list of the

eigenvalues of M and a list of the multiplicities of the

eigenvalues. The second is a list of lists of eigenvectors.

There is one list of eigenvectors for each eigenvalue.

There may be one or more eigenvectors in each list.

 74

Program:

Program to find the algebraic multiplicity and geometric multiplicity of eigen values of a

linear transformation 𝑻: 𝑹𝒏⟶ 𝑹𝒏

T(x):= define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

B:Standard basis of given vector space$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

table_form(reverse(N))$

Note: 1. Here X:[x,y,z] is taken for illustration purpose.

 Take X:[x,y] if domain is 𝑅2, X:[x,y,z] if domain is 𝑅3,

 X:[w,x,y,z] if domain is 𝑅4 and so on.

 2. Take standard basis as: B:[[1,0],[0,1]] for 𝑅2, B:[[1,0,0],[0,1,0],[0,0,1]] for 𝑅3,

B: [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on.

Program to find the algebraic multiplicity and geometric multiplicity of eigen

values of a matrix

M:matrix([R1],[R2],…,[Rn])$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear matrix is M=",M)$

table_form(reverse(N))$

 75

Worked Examples:

Problem 1. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values

of the linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝟒𝒚, 𝟐𝒙 + 𝟑𝒚)

Program:

T(x):=[x[1]+4*x[2],2*x[1]+3*x[2]]$

X:[x,y]$

B:[[1,0],[0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(x,y)=",T(X))$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [4𝑦 + 𝑥, 3𝑦 + 2𝑥]

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 5 1 {[1,1]}

𝜆2 = −1 1 {[1, −
1

2
]}

Problem 2. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values

of the linear transformation 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎,𝒘, 𝒙, 𝒚)

 76

Program:

T(x):=[0,x[1],x[2],x[3]]$

X:[w,x,y,z]$

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑤, 𝑥, 𝑦]

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 4 1 {[0,0,0,1]}

Problem 3. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values

of the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝟐𝒙 + 𝒚, 𝟑𝒙 + 𝟐𝒚)

Program:

T(x):=[x[1], 2*x[1]+x[2],3*x[1]+2*x[2]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$

 77

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑥, 𝑦 + 2𝑥, 2𝑦 + 3𝑥]

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 1 1 {[0,0,1]}
𝜆2 = 1 2 1 {[0,1,2]}

Problem 4. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values

of the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 defined by

 𝑻(𝒙, 𝒚, 𝒛) = (𝟓𝒙 − 𝟔𝒚 − 𝟔𝒛,−𝒙 + 𝟒𝒚 + 𝟐𝒛, 𝟑𝒙 − 𝟔𝒚 − 𝟒𝒛)

Program:

T(x):=[5*x[1]-6*x[2]-6*x[3],-x[1]+4*x[2]+2*x[3],3*x[1]-6*x[2]-4*x[3]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

table_form(reverse(N))$

 78

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [−6𝑧 − 6𝑦 + 5𝑥, 2𝑧 + 4𝑦 − 𝑥,−4𝑧 − 6𝑦 + 3𝑥]

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝜆1 = 1 1 1 {[1,−
1

3
, 1]}

𝜆2 = 2 2 2 {[0,1, −1], [1,0,
1

2
]}

Problem 5. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values

of the matrix 𝑀 = (
1 2 0
2 1 −6
2 −2 3

)

Program:

M:matrix([1,2,0],[2,1,-6],[2,-2,3])$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear matrix is M=",M)$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
1 2 0
2 1 −6
2 −2 3

)

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = −3 1 1 {[1,−2,−1]}
𝜆2 = 3 1 1 {[1,1,0]}
𝜆3 = 5 1 1 {[1,2,−1]}

 79

Problem 6. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values

of the matrix 𝑀 = (
1 1
0 1

)

Program:

M:matrix([1,1],[0,1])$

[vals, vecs]:eigenvectors(M)$

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$

for i thru length(vals[1]) do N:push(N(i),N)$

print("Given Linear matrix is M=",M)$

table_form(reverse(N))$

Output:

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
1 1
0 1

)

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 1 2 1 {[1,0]}

 80

Exercise:

I. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values of

the given linear transformations:

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒚, 𝟎) (Answer: 𝜆 = 0, AM=2, GM=1)

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟎, 𝟎, 𝟎) (Answer: 𝜆 = 0, AM=3, GM=3)

3. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛) (Answer: 𝜆 = 1, AM=3, GM=3)

4. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒙 − 𝒚, 𝒙 − 𝒛)

(Answer: 𝜆 = 1, AM=1, GM=1, 𝜆 = −1, AM=2, GM=2)

5. 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝒘 + 𝒙, 𝒙 + 𝒚, 𝒚 + 𝒛, 𝒛 + 𝒘)

(Answer: 𝜆 = 0, AM=1, GM=1, 𝜆 = 2, AM=1, GM=1, 𝜆 = 1 + 𝑖, AM=1, GM=1, 𝜆 = 1 − 𝑖, AM=1, GM=1)

II. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values of

the given matrices:

1. 𝑴 = (
2 5
0 2

) (Answer: 𝜆 = 2, AM=2, GM=1)

2. 𝑴 = (
0 0 2
1 0 1
0 1 −2

) (Answer: 𝝀 = 𝟏, AM=1, GM=1, 𝝀 = −𝟏, AM=1, GM=1, 𝝀 = −𝟐, AM=1, GM=1)

3. 𝑴 = (
2 4 6
0 2 2
0 0 4

) (Answer: 𝝀 = 𝟐, AM=2, GM=1, 𝝀 = 4, AM=1, GM=1)

4. 𝑴 = (

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

) (Answer: 𝝀 = 1, AM=2, GM=1, 𝝀 = 0, AM=2, GM=1)

 81

Program 11

Program on diagonalization.

Aim: To test whether a square matrix / a linear operator is diagonalizable or not and

finding its diagonal form if exists using Mathematics Softwares (FOSS).

Software: Maxima

Keys:

Key Function

load ("eigen")

Loads the package eigen which contains several functions

devoted to the symbolic computation of eigenvalues and

eigenvectors.

* (asterisk) The operator * represents commutative multiplication

^ Exponentiation operator or power or index

[a1, a2,…,am] List of numbers/objects a1, a2,…,am.

L[i] Returns i-th element of the list L

' The single quote operator ' prevents evaluation.

makelist (expr, i, i_0, i_max)

Returns the list of elements obtained when ev

(expr, i=j) is applied to the elements j of the

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or

equal to |i_max|.

length (expr)
Returns the number of parts in the external (displayed)

form of expr

:= The function definition operator

if cond_1 then expr_1 else expr_0
evaluates to expr_1 if cond_1 evaluates to true, otherwise

the expression evaluates to expr_0.

print (“text”, expr)$
Displays text within inverted commas and evaluates and

displays expr

transpose (M) Returns the transpose of M.

apply('matrix,L) Converting nested lists L to matrix

similaritytransform (M)
similaritytransform computes a similarity transform of the

matrix M.

leftmatrix
If P-1MP=D is similarity transform of M then leftmatrix

refers to P-1

rightmatrix
If P-1MP=D is similarity transform of M then rightmatrix

refers to P

≠ Not equal to

[] Empty list

radcan (expr)
Simplifies expr, which can contain logs, exponentials, and

radicals

 82

Note:1. Press Shift+Enter for evaluation of commands and display of output.

 2. Replace semicolon (;) by dollar ($) to suppress output of any input line.

 3. Replace dollar ($) by semicolon (;) to see output of any input line.

 4. Start each session with kill(all)$ or quit()$ to remove previously assigned values

 of all symbols

Definitions and Formulae:

Diagonalization of a square matrix: Let 𝑀 be a square matrix of order 𝑛. 𝑀 is said to be diagonalizable

if 𝑀 is similar to a diagonal matrix 𝐷, that is, 𝑃−1𝑀𝑃 = 𝐷 is a diagonal matrix for some non-singular

matrix 𝑃. Here 𝐷 is called the diagonal form of 𝑀.

Not all square matrices are diagonalizable. A square matrix is diagonalizable if for each eigen value,

algebraic multiplicity = geometric multiplicity.

Diagonalization of a linear operator/transformation: Let 𝑇: 𝑉 → 𝑉 be a linear operator and 𝑉 is a finite-

dimensional vector space. 𝑇 is said to be diagonalizable if there exists a basis 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛} of

𝑉 such that the matrix of 𝑇 with respect to the basis 𝐵 is diagonal.

Not all linear operators are diagonalizable. A linear operator is diagonalizable if and only if there

exists a basis of 𝑉 containing eigen vectors of 𝑇.

Program:

Program to verify diagonalizability of a matrix M.

Also finding P and D such that 𝑃−1𝑀𝑃 = 𝐷 if M is diagonalizable.

load("eigen")$

M:matrix([R1],[R2],…,[Rn])$

similaritytransform (M)$

P:rightmatrix$

P1:leftmatrix$

print("Given matrix is M=",M)$

if P≠[] then print("Given matrix is Diagonalizable")

and print("Matrix P=",P) and

print("Diagonal form of M is D=",radcan(P1.M.P)) else

print("Given matrix is not Diagonalizable")$

 83

Program to verify diagonalizability of a linear operator 𝑇: 𝑉 → 𝑉. If 𝑇 is diagonalizable,

 finding diagonal form of the matrix of T.

T(x):= define T as an ordered list as given in problem in terms of x[i]$

X:[x,y,z]$

B:standard basis of domain$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

similaritytransform (M)$

P:rightmatrix$

P1:leftmatrix$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Matrix of T is M=",M)$

if P≠[] then print("Given T is Diagonalizable") and

print("Diagonal form of M is D=",radcan(P1.M.P)) else

print("Given T is not Diagonalizable")$

Note: 1. Here X:[x,y,z] is taken for illustration purpose.

 Take X:[x,y] if domain is 𝑅2, X:[x,y,z] if domain is 𝑅3,

 X:[w,x,y,z] if domain is 𝑅4 and so on.

 2. Take standard basis as: B:[[1,0],[0,1]] for 𝑅2, B:[[1,0,0],[0,1,0],[0,0,1]] for 𝑅3,

B: [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4 and so on.

Worked Examples:

Problem 1. Write a program to verify diagonalizability of matrix 𝑀 = (
0 −1
1 0

)

 Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable

Program:

load("eigen")$

M:matrix([0,-1],[1,0])$

similaritytransform (M)$

P:rightmatrix$

 84

P1:leftmatrix$

print("Given matrix is M=",M)$

if P≠[] then print("Given matrix is Diagonalizable")

and print("Matrix P=",P) and

print("Diagonal form of M=",radcan(P1.M.P)) else

print("Given matrix is not Diagonalizable")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
0 −1
1 0

)

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒

𝑀𝑎𝑡𝑟𝑖𝑥 𝑃 =

(

1

√2

1

√2
%𝑖

√2
−
%𝑖

√2)

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑀 𝑖𝑠 𝐷 = (
−%𝑖 0
0 %𝑖

)

Problem 2. Write a program to verify diagonalizability of matrix 𝑀 = (
−1 2 4
−2 4 2
−4 2 7

)

 Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable

Program:

load("eigen")$

M:matrix([-1,2,4],[-2,4,2],[-4,2,7])$

similaritytransform (M)$

P:rightmatrix$

P1:leftmatrix$

print("Given matrix is M=",M)$

if P≠[] then print("Given matrix is Diagonalizable")

and print("Matrix P=",P) and

print("Diagonal form of M is D=",radcan(P1.M.P)) else

print("Given matrix is not Diagonalizable")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
−1 2 4
−2 4 2
−4 2 7

)

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒

 85

𝑀𝑎𝑡𝑟𝑖𝑥 𝑃 =

(

2

3

1

√2
0

1

3
0

2

√5
2

3

1

√2
−
1

√5)

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑀 𝑖𝑠 𝐷 = (
4 0 0
0 3 0
0 0 3

)

Problem 3. Write a program to verify diagonalizability of matrix 𝑀 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)

 Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable

Program:

load("eigen")$

M:matrix([0,1,0,1],[1,0,1,0],[0,1,0,1],[1,0,1,0])$

similaritytransform (M)$

P:rightmatrix$

P1:leftmatrix$

print("Given matrix is M=",M)$

if P≠[] then print("Given matrix is Diagonalizable")

and print("Matrix P=",P) and

print("Diagonal form of M is D=",radcan(P1.M.P)) else

print("Given matrix is not Diagonalizable")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒

𝑀𝑎𝑡𝑟𝑖𝑥 𝑃 =

(

1

2

1

2

1

√2
0

−
1

2

1

2
0

1

√2
1

2

1

2
−
1

√2
0

−
1

2

1

2
0 −

1

√2)

 86

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑀 𝑖𝑠 𝐷 = (

−2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

)

Problem 4. Write a program to verify diagonalizability of matrix 𝑀 = (
1 1
0 1

)

 Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable

Program:

load("eigen")$

M:matrix([0,-1],[1,0])$

similaritytransform (M)$

P:rightmatrix$

P1:leftmatrix$

print("Given matrix is M=",M)$

if P≠[] then print("Given matrix is Diagonalizable")

and print("Matrix P=",P) and

print("Diagonal form of M=",radcan(P1.M.P)) else

print("Given matrix is not Diagonalizable")$

Output:

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
1 1
0 1

)

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑛𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒

Problem 5. Write a program to verify diagonalizability of matrix 𝑀 = (
2 1 0
0 2 1
0 0 2

)

 Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable

Program:

load("eigen")$

M:matrix([2,1,0],[0,2,1],[0,0,2])$

similaritytransform (M)$

P:rightmatrix$

P1:leftmatrix$

print("Given matrix is M=",M)$

if P≠[] then print("Given matrix is Diagonalizable")

and print("Matrix P=",P) and

print("Diagonal form of M is D=",radcan(P1.M.P)) else

print("Given matrix is not Diagonalizable")$

 87

Output:

 𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
2 1 0
0 2 1
0 0 2

)

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑛𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒

Problem 6. Write a program to verify diagonalizability of linear operator 𝑻:𝑹𝟑 → 𝑹𝟑 defined by

 𝑻(𝒙, 𝒚, 𝒛) = (𝟒𝒙 + 𝒛, 𝟐𝒙 + 𝟑𝒚 + 𝟐𝒛, 𝒙 + 𝟒𝒛). Also, the find diagonal form of the matrix

of T if 𝑻 is diagonalizable.

 Program:

T(x):=[4*x[1]+x[3],2*x[1]+3*x[2]+2*x[3],x[1]+4*x[3]]$

X:[x,y,z]$

B:[[1,0,0],[0,1,0],[0,0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

similaritytransform (M)$

P:rightmatrix$

P1:leftmatrix$

print("Given Linear Transformation is T(x,y,z)=",T(X))$

print("Matrix of T is M=",M)$

if P≠[] then print("Given T is Diagonalizable") and

print("Diagonal form of M is D=",radcan(P1.M.P)) else

print("Given T is not Diagonalizable")$

Output:

 𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑧 + 4𝑥, 2𝑧 + 3𝑦 + 2𝑥, 4𝑧 + 𝑥]

𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑖𝑠 𝑀 = (
4 0 1
2 3 2
1 0 4

)

𝐺𝑖𝑣𝑒𝑛 𝑇 𝑖𝑠 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑀 𝑖𝑠 𝐷 = (
5 0 0
0 3 0
0 0 3

)

Problem 7. Write a program to verify diagonalizability of linear operator 𝑻:𝑹𝟐 → 𝑹𝟐 defined by

 𝑻(𝒙, 𝒚) = (𝟐𝒙 + 𝒚, 𝟐𝒚). Also, the find diagonal form of the matrix

of T if 𝑻 is diagonalizable.

 88

Program:

T(x):=[2*x[1]+x[2],2*x[2]]$

X:[x,y]$

B:[[1,0],[0,1]]$

L:makelist(T(B[i]),i,1,length(B))$

M:transpose(apply('matrix,L))$

similaritytransform (M)$

P:rightmatrix$

P1:leftmatrix$

print("Given Linear Transformation is T(x,y)=",T(X))$

print("Matrix of T is M=",M)$

if P≠[] then print("Given T is Diagonalizable") and

print("Diagonal form of M is D=",radcan(P1.M.P)) else

print("Given T is not Diagonalizable")$

Output:

 𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑦 + 2𝑥, 2𝑦]

𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑖𝑠 𝑀 = (
2 1
0 2

)

𝐺𝑖𝑣𝑒𝑛 𝑇 𝑖𝑠 𝑛𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒

 89

Exercise:

I. Write a program to verify diagonalizability of a given matrix 𝑀. Also finding 𝑃 and 𝐷

such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable.

1. 𝑀 = (
5 0
3 5

) (Answer: 𝑁𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

2. 𝑀 = (
5 0
3 6

) (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

3. 𝑀 = (
6 3 −8
0 −2 0
1 0 −3

) (Answer: 𝑁𝑜𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

4. 𝑀 = (
2 1
0 2

) (Answer: 𝑁𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

5. 𝑀 = (
1 0 0
2 1 0
3 2 0

) (Answer: 𝑁𝑜𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

6. 𝑀 = (
2 0 0
2 6 0
3 2 1

) (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

7. 𝑀 = (

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

) (Answer: 𝑁𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

II. Write a program to verify diagonalizability of given linear operator 𝑇: 𝑉 → 𝑉.

Also, the find diagonal form of the matrix of T if 𝑇 is diagonalizable.

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟎, 𝟎) (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛) (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

3. 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎,𝒘, 𝒙, 𝒚) (Answer: 𝑁𝑜𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

4. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝒚, 𝟐𝒚) (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

5. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝟐𝒚, 𝒚) (Answer: 𝑁𝑜𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

6. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝟑𝒚, 𝟐𝒙 − 𝒚, 𝒚 − 𝒛) (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

7. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒛, 𝒚, 𝒙) (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒)

BLDEA’s s.B. Arts AnD K.C.P. sCiEnCE

CoLLEgE, VijAyAPur
(Affiliated to Rani Channamma University, Belagavi)

Practical’s on DSC 2
numEriCAL AnALysis

(As PEr nEP-2020)

mAnuAL
B. Sc. VI Semester

Name:………………………………………………………………………………………...

Class:……………………………………………………………………………………………

UUCMS No:…………………………………………………………………………………

DEPARTMENT OF MATHEMATICS

CONTENTS

Prog.

No.

TITLE

1
To find a real root of the given equation using Bisection

Method
02

2
To find a real root of the given equation using Regula Falsi

Method.
04

3
To find a real root of the given equation using Newton Raphson

Method.
06

4 Solving system of equations by Gauss elimination method. 08

5 Solving system of equations by Jacobi iteration method. 10

6 Solving system of equations by Gauss - Seidel iterative method. 13

7
To find the value of f(x) at any point using Newton-Gregory

forward interpolation formula.
16

8 Lagrange’s Interpolation. 18

9 To evaluate definite integrals using Simpson’s one-third rule. 20

10 To evaluate definite integrals using Simpson’s three-eight rule. 22

 1

 No.

Method.

The method consists of locating the root of the equation 0)(xf between a and

b a(<)b . If)(xf is continuous in the interval [a, b] and)(af and)(bf are of

opposite signs then there is a root between a and b . For definiteness,)(af be

negative and)(bf be positive. Then the first approximation to the root is
1x =

2

ba 
. If

1(xf) = 0 then
1x is a root of)(xf =0. Otherwise, the root lies between a

and
1x or

1x and b accordingly as
1(xf) is positive or negative. Then we bisect the

interval as before and continue the process until the root is found to the desired

accuracy.

Example: Maxima program to find a real root of 𝑥3 − 9𝑥 + 1 = 0 using Bisection

method.

 2

PROGRAM-1: To find a real root of the given equation using Bisection

Exercise: Write a maxima program to find a real root of the following equations

using Bisection method.

1.1 𝒙𝟑 − 𝟓𝒙 + 𝟑 = 𝟎 (Ans: 0. 657)

1.2 𝒙𝟑 − 𝒙 − 𝟏 = 𝟎 (Ans: 1. 325)

1.3 𝒙𝟑 − 𝟏𝟔𝒙𝟐 + 𝟑 = 𝟎 (Ans: 0.439)

1.4 𝒙𝒆𝒙 = 𝟏 (Ans: 0. 567)

1.5 𝒄𝒐𝒔𝒙 − 𝟑𝒙 + 𝟏 = 𝟎 (Ans: 0. 607)

 3

Program-2: To find a real root of the given equation using Regula Falsi Method.

The Regula- Falsi method is based on replacing the part of the curve between

the points))(,(11 xfx and))(,(22 xfx by the chord joining these two points and

then taking the point of intersection of the chord with x -axis as an

approximation to the root. We obtain
)()(

)()(

12

1221

xfxf

xfxxfx
x




 ,which gives the first

approximation. Using this equation, we get a sequence of approximations till we

get the root to the desired accuracy.

Example: Maxima program to find a real root of 𝑥3 − 2𝑥 − 9 = 0 using Regula

Falsi method.

 4

Exercise: Write a maxima program to find a real root of the following equations

using Regula Falsi Method.

2.1 𝒙𝟑 − 𝒙 − 𝟒 = 𝟎 (Ans: 1. 796)

2.2 𝒙𝟑 − 𝟐𝒙 − 𝟏 = 𝟎 (Ans: 1. 618)

2.3 𝒙𝟑 − 𝟏𝟎𝒙 − 𝟓 = 𝟎 (Ans: 3. 388)

2.4 𝒙𝟑 + 𝟒𝒙𝟐 − 𝟏𝟎 = 𝟎 (Ans: 1. 365)

2.5 𝒄𝒐𝒔𝒙 − 𝟑𝒙 + 𝟏 = 𝟎 (Ans: 0. 607)

 5

Program-03: To find a real root of the given equation using Newton Raphson

Method.

Assuming that 0x is an approximate value of a real root of the equation 0)(xf

,let
1x be the exact root and hxx  01 ,whereh is a small correction. Using

Taylor’s expansion and neglecting higher powers of ,.....),(32 hhh ,we get

)(

)(

0

'

0
01

xf

xf
xx  .

In general, ,
)(

)(
'1

n

n
nn

xf

xf
xx 

,...2,1,0n

This is Newton-Raphson iterative formula.

Example: Maxima program to find a real root of 𝑥3 − 9𝑥 − 12 = 0 using Newton

Raphson method.

 6

Exercise: Write a maxima program to find a real root of the following equations

using Newton Raphson Method.

3.1 𝒙𝟑 − 𝟐𝒙 − 𝟓 = 𝟎 (Ans: 2. 095)

3.2 𝒙𝟑 + 𝒙𝟐 + 𝟑𝒙 + 𝟒 = 𝟎 (Ans: -1. 222)

3.3 𝒙𝟑 − 𝟑𝟕 = 𝟎 (Ans: 3. 332)

3.4 𝒔𝒊𝒏𝒙 = 𝒙 − 𝟐 (Ans: 2. 554)

3.5 𝒙𝒔𝒊𝒏𝒙 + 𝒄𝒐𝒔𝒙 = 𝟎 (Ans: 2.798)

 7

Program-04: Solving system of equations by Gauss elimination method.

Example: Maxima program to solve

 𝟐𝒙 + 𝒚 + 𝒛 = 𝟏𝟎

 𝟑𝒙 + 𝟐𝒚 + 𝟑𝒛 = 𝟏𝟖

 𝒙 + 𝟒𝒚 + 𝟗𝒛 = 𝟏𝟔

by Gauss elimination method.

 8

Exercise: Write a maxima program to solve the following by Gauss

 elimination method.

4.1 𝒙 + 𝟒𝒚 − 𝒛 = −𝟓 [𝒙 =
𝟏𝟏𝟕

𝟕𝟏
, 𝒚 = −

𝟖𝟏

𝟕𝟏
, 𝒛 =

𝟏𝟒𝟖

𝟕𝟏
]

 𝒙 + 𝒚 − 𝟔𝒛 = −𝟏𝟐

 𝟑𝒙 − 𝒚 − 𝒛 = 𝟒

4.2 𝒙 + 𝒚 + 𝒛 = 𝟔 [𝒙 = 𝟑, 𝒚 = 𝟏, 𝒛 = 𝟐]

 𝟑𝒙 + 𝟑𝒚 + 𝟒𝒛 = 𝟐𝟎

 𝟐𝒙 + 𝒚 + 𝟑𝒛 = 𝟏𝟑

4.3 𝟐𝒙 + 𝟐𝒚 + 𝒛 = 𝟏𝟐 [𝒙 = −
𝟓𝟏

𝟒
, 𝒚 =

𝟏𝟏𝟓

𝟖
, 𝒛 =

𝟑𝟓

𝟒
]

 𝟑𝒙 + 𝟐𝒚 + 𝟐𝒛 = 𝟖

 𝟓𝒙 + 𝟏𝟎𝒚 − 𝟖𝒛 = 𝟏𝟎

4.4 5𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 = 𝟒 [𝒙𝟏 = 𝟏, 𝒙𝟐 = 𝟐, 𝒙𝟑 = −𝟏, 𝒙𝟒 = −𝟐]

 𝒙𝟏 + 𝟕𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 = 𝟏𝟐

 𝒙𝟏 + 𝒙𝟐 + 𝟔𝒙𝟑 + 𝒙𝟒 = −𝟓

 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + 𝟒𝒙𝟒 = −𝟔

4.5 𝒙𝟏 − 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 = 𝟔 [𝒙𝟏 =
𝟏𝟕

𝟑
, 𝒙𝟐 = 𝟔, 𝒙𝟑 =

𝟓

𝟑
, 𝒙𝟒 =

𝟏𝟒

𝟑
]

 𝟐𝒙𝟏 − 𝒙𝟑 − 𝒙𝟒 = 𝟓

 𝟐𝒙𝟏 − 𝟐𝒙𝟐 + 𝒙𝟒 = 𝟒

 𝒙𝟐 + 𝒙𝟑 − 𝒙𝟒 = 𝟑

 9

Program-05: Solving system of equations by Jacobi iteration method.

Example: Maxima program to solve

 𝟏𝟎𝒙 + 𝒚 + 𝒛 = 𝟏𝟐

 𝟐𝒙 + 𝟏𝟎𝒚 + 𝒛 = 𝟏𝟑

 𝟐𝒙 + 𝟐𝒚 + 𝟏𝟎𝒛 = 𝟏𝟒

 by Jacobi iteration method.

 10

 11

Exercise: Write a maxima program to solve the following by Jacobi iteration

method.

5.1 𝟐𝟎𝒙 + 𝒚 − 𝟐𝒛 = 𝟏𝟕 [𝒙 = 𝟏, 𝒚 = −𝟏, 𝒛 = 𝟏]

 𝟑𝒙 + 𝟐𝟎𝒚 − 𝒛 = −𝟏𝟖

 𝟐𝒙 − 𝟑𝒚 + 𝟐𝟎𝒛 = 𝟐𝟓

5.2 𝟓𝒙 + 𝟐𝒚 + 𝒛 = 𝟏𝟐 [𝒙 = 𝟏, 𝒚 = 𝟐, 𝒛 = 𝟑]

 𝒙 + 𝟒𝒚 + 𝟐𝒛 = 𝟏𝟓

 𝒙 + 𝟐𝒚 + 𝟓𝒛 = 𝟐𝟎

5.3 𝟓𝒙 − 𝒚 = 𝟗 [𝒙 = 𝟐, 𝒚 = 𝟏, 𝒛 = −𝟏]

 −𝒙 + 𝟓𝒚 − 𝒛 = 𝟒

 𝒚 − 𝟓𝒛 = 𝟔

5.4 𝟓𝒙 − 𝒚 + 𝒛 = 𝟏𝟎 [𝒙 = 𝟐. 𝟓𝟓𝟔, 𝒚 = 𝟏. 𝟕𝟐𝟐, 𝒛 = −𝟏. 𝟎𝟓𝟓]

 𝒙 + 𝟐𝒚 = 𝟔

 𝒙 + 𝒚 + 𝟓𝒛 = −𝟏

 with (2, 3, 0)as initial approximation to the solution.

5.5 𝟓𝒙 − 𝒚 + 𝟑𝒛 = 𝟏𝟎 [𝒙 = 𝟒, 𝒚 = 𝟏, 𝒛 = −𝟑]

 𝟑𝒙 + 𝟔𝒚 = 𝟏𝟖

 𝒙 + 𝒚 + 𝟓𝒛 = −𝟏𝟎

 with (3, 0, −2) as initial approximation to the solution.

Note: To get decimal values in the solution use float command instead of round
 command in the program.

 12

Program-06: Solving system of equations by Gauss - Seidel iterative method.

Example: Maxima program to solve

 𝟐𝟕𝒙 + 𝟔𝒚 − 𝒛 = 𝟖𝟓

 𝟔𝒙 + 𝟏𝟓𝒚 + 𝟐𝒛 = 𝟕𝟐

 𝒙 + 𝒚 + 𝟓𝟒𝒛 = 𝟏𝟏𝟎

by Jacobi iteration method.

 13

 14

Exercise: Write a maxima program to solve the following by Gauss - Seidel iterative

method.

6.1 𝟏𝟎𝒙 + 𝒚 + 𝒛 = 𝟏𝟐 [𝒙 = 𝟏, 𝒚 = 𝟏, 𝒛 = 𝟏]

 𝒙 + 𝟏𝟎𝒚 + 𝒛 = 𝟏𝟐

 𝒙 + 𝒚 + 𝟏𝟎𝒛 = 𝟏𝟐

6.2 𝟓𝒙 + 𝟐𝒚 + 𝒛 = 𝟏𝟐 [𝒙 = 𝟏, 𝒚 = 𝟐, 𝒛 = 𝟑]

 𝒙 + 𝟒𝒚 + 𝟐𝒛 = 𝟏𝟓

 𝒙 + 𝟐𝒚 + 𝟓𝒛 = 𝟐𝟎

6.3 𝟐𝟖𝒙 + 𝟒𝒚 − 𝒛 = 𝟑𝟐 [𝒙 = 𝟎. 𝟗𝟗𝟑𝟑, 𝒚 = 𝟏. 𝟓𝟎𝟕, 𝒛 = 𝟏. 𝟖𝟒𝟗]

 𝟐𝒙 + 𝟏𝟕𝒚 + 𝟒𝒛 = 𝟑𝟓

 𝒙 + 𝟑𝒚 + 𝟏𝟎𝒛 = 𝟐𝟒

6.4 𝒙 + 𝟏𝟕𝒚 − 𝟐𝒛 = 𝟒𝟖 [𝒙 = 𝟏. 𝟔𝟕𝟓, 𝒚 = 𝟐. 𝟖𝟔𝟐, 𝒛 = 𝟏. 𝟏𝟔𝟑]

 𝟐𝒙 + 𝟐𝒚 + 𝟏𝟖𝒛 = 𝟑𝟎

 𝟑𝟎𝒙 − 𝟐𝒚 + 𝟑𝒛 = 𝟒𝟖

6.5 𝟗𝒙 − 𝒚 + 𝟐𝒛 = 𝟗 [𝒙 = 𝟎. 𝟗𝟏𝟕, 𝒚 = 𝟏. 𝟔𝟒𝟕, 𝒛 = 𝟏. 𝟏𝟗𝟓]

 𝒙 + 𝟏𝟎𝒚 − 𝟐𝒛 = 𝟏𝟓

 𝟐𝒙 − 𝟐𝒚 − 𝟏𝟑𝒛 = −𝟏𝟕

Note: To get decimal values in the solution use float command instead of round
 command in the program.

 15

Program-07: To find the value of f(x) at any point using Newton-Gregory

forward interpolation formula.

If 𝑓(𝑥0) = 𝑦0, 𝑓(𝑥1) = 𝑦1, ⋯ , 𝑓(𝑥𝑛) = 𝑦𝑛 be a set of values of an unknown function

𝑦 = 𝑓(𝑥) corresponding to the values 𝑥: 𝑥0, 𝑥1, 𝑥3, ⋯ , 𝑥𝑛 at equal intervals then the

Newton-Gregory forward interpolation formula is given by

𝒇(𝒙 + 𝒏𝒉) = 𝒇(𝒙) +
𝒏

𝟏!
∆𝒇(𝒙) +

𝒏(𝒏 − 𝟏)

𝟐!
∆𝟐𝒇(𝒙) +

𝒏(𝒏 − 𝟏)(𝒏 − 𝟐)

𝟑!
∆𝟑𝒇(𝒙) + ⋯ + ∆𝒏𝒇(𝒙)

or

𝒚𝒙 = 𝒚𝟎 +
𝒏

𝟏!
∆𝒚𝟎 +

𝒏(𝒏 − 𝟏)

𝟐!
∆𝟐𝒚𝟎 +

𝒏(𝒏 − 𝟏)(𝒏 − 𝟐)

𝟑!
∆𝟑𝒚𝟎 + ⋯ + ∆𝒏𝒚𝟎

Example: Maxima program to find 𝑓(1.4) using Newton-Gregory forward

interpolation formula given that.

𝑥 1 2 3 4 5

𝑓(𝑥) 10 26 58 112 194

 16

Exercise:

7.1 Use Newton-Gregory interpolation formula to find y at x = 2.5 given

𝑥 1 2 3 4 5 6

𝑓(𝑥) 1 8 27 64 125 216

7.2 Use Newton-Gregory interpolation formula to find y f(0.33) given

𝑥 0.3 0.4 0.5 0.6

𝑓(𝑥) 0.6179 0.6554 0.6915 0.7257

7.3 Use Newton-Gregory interpolation formula to estimate the population for the

year 1985 from the table

Year 1970 1980 1990 2000 2010 2020

Population

in crores
55.75 69.68 87.05 105.96 124.06 139.64

7.4 From the following data find the number of students who obtained less than 45

marks using Newton-Gregory interpolation formula

Marks 30-40 40-50 50-60 60-70 70-80

Number of

students
31 42 51 35 31

 17

Program-08: Lagrange’s Interpolation.

If 𝑓(𝑥0) = 𝑦0, 𝑓(𝑥1) = 𝑦1, ⋯ , 𝑓(𝑥𝑛) = 𝑦𝑛 be a set of values of an unknown function

𝑦 = 𝑓(𝑥) corresponding to the values 𝑥: 𝑥0, 𝑥1, 𝑥3, ⋯ , 𝑥𝑛 not necessarily at equal

intervals then the Lagrange’s interpolation formula is given by

Example: Maxima program to find 𝑓(4) using Lagrange’s interpolation formula

given that.

𝑥 0 2 3 6

𝑓(𝑥) -4 2 14 158

 18

Exercise:

8.1 Use Lagrange’s interpolation formula to find y at x= 10 given

𝑥 5 6 9 11

𝑓(𝑥) 12 13 14 16

8.2 Use Lagrange’s interpolation formula to find y at x= 1.6 given

𝑥 1.2 2.0 2.5 3.0

𝑓(𝑥) 1.36 0.58 0.34 0.20

8.3 Use Lagrange’s interpolation formula to find f(9) given

𝑥 5 7 11 13 17

𝑓(𝑥) 150 392 1452 2366 5202

8.4 The following table gives the normal weights of babies during first eight months

of life

Age (in months) 0 2 5 8 10

Weight (in Kg) 2.5 4.4 6.1 7.0 7.5

Estimate the weight of the baby at the age of seven months using Lagrange’s

interpolation formula.

 19

Program-09: To evaluate definite integrals using Simpson’s one-third rule.

Let 
b

a

dxxfI)(, where)(xfy  takes the values nyyyy ,...,,, 210 for .,...,,, 210 nxxxxx 

Divide the interval (a, b) into even number of equal sub-intervals of width h.

Simpson’s one-third rule is as follows

)]...(2)...(4)[(
3

)(2421310

0

  nnn

x

x

yyyyyyyy
h

dxxf
n

Example: Write a maxima program to evaluate ∫
1

1+𝑥
𝑑𝑥

6

0
 with n = 6 using

Simpson’s one-third rule.

 20

Exercise:

Write a maxima program to evaluate the following using Simpson’s one-third rule.

9.1 ∫
𝟏

𝟏+𝒙𝟐 𝒅𝒙
𝟔

𝟎
 , n=6 (Ans:1.366)

9.2 ∫
𝒙

𝟏+𝒙𝟐 𝒅𝒙
𝟔

𝟎
 , n=6 (Ans: 1.801)

9.3 ∫
𝒙

𝟏+𝒙𝟒 𝒅𝒙
𝟏

𝟎
, n=4 (Ans:0.393)

9.4 ∫
𝟏

𝟏+𝒙
𝒅𝒙

𝟏.𝟐

𝟎
 , n=6 (Ans:0.7885)

9.5 ∫
𝟏

𝒙
𝒅𝒙

𝟐

𝟏
 , n=4 (Ans: 0.6933)

 21

Let 
b

a

dxxfI)(, where)(xfy  takes the values nyyyy ,...,,, 210 for .,...,,, 210 nxxxxx 

Divide the interval (a,b) into a number which is multiple of 3 sub-intervals .

Simpson’s Three-eight rule is as follows

)]...(2)...(3)[(
8

3
)(36312454210

0

  nnnnn

x

x

yyyyyyyyyyyyhdxxf
n

Example: Write a maxima program to evaluate ∫
1

(1+𝑥)2 𝑑𝑥
3

0
 with n = 6 using

Simpson’s three-eight rule.

 22

Program-10: To evaluate definite integrals using Simpson’s three-eight rule.

Exercise: Write a maxima program to evaluate the following using Simpson’s

three-eight rule.

10.1 ∫ (𝟐𝒙 + 𝒙𝟐)
𝟏

𝟐⁄ 𝒅𝒙
𝟎.𝟑

𝟎
 , n=6 (Ans:0.1602)

10.2 ∫
𝟏

𝒙𝟐+𝟒
𝒅𝒙

𝟑

𝟎
, n=6 (Ans: 0.4913)

10.3 ∫ 𝒆
𝟏

𝒙⁄ 𝒅𝒙
𝟒

𝟏
, n=6 (Ans: 4.866)

10.4 ∫ 𝒍𝒐𝒈𝒙 𝒅𝒙
𝟓.𝟐

𝟒
, n=6 (Ans: 1.828)

10.5 ∫ (𝟏 − 𝟑𝒙𝟒)
𝟏

𝟐⁄ 𝒅𝒙
𝟎.𝟔

𝟎
, n=6 (Ans: 0.5751)

 23

