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Theory Based Practical’s On Algebra-I and Calculus-I 

Lab Practical’s:  

Part A: (SciLab) 

Introduction to the software and commands related to 
the topic. 
1. Computation of addition and subtraction of 

matrices.  
2. Computation of Multiplication of matrices.  
3. Computation of Trace and Transpose of Matrix.  
4. Computation of Rank of matrix and Row reduced 

Echelon form.  
5. Computation of Inverse of a Matrix using Cayley-

Hamilton theorem.  
6. Solving the system of homogeneous and non-

homogeneous linear algebraic equations. 

Part B: (Maxima) 

7. Finding the nth Derivative of 𝑒௔௫, trigonometric and 
hyperbolic functions. 

8. Finding the nth Derivative of algebraic and 
logarithmic functions.  

9. Finding the nth Derivative of 𝑒௔௫ା௕sin(𝑏𝑥 +  𝑐), 

𝑒௔௫ା௕cos(𝑏𝑥 +  𝑐).  
10. Finding the Taylor’s and Maclaurin’s expansions of 

the given functions.  
11. Finding the angle between the radius vector and 

tangent.  
12. Finding the curvatures of the given curves.  
13. Tracing of standard curves (Cartesian, polar and 

parametric).  
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Program 1  

Computation of addition and subtraction of matrices 

clc 
A=input("Enter the first matrix A= ") 
[m,n]=size(A) 
disp(A) 
B=input("Enter the second matrix B=") 
[k,l]=size(B) 
disp(B) 
ifsize(A)==size(B)then 
C=A+B 
D=A-B 
disp("Addition of two matrices C=",C) 
disp("Sub of two matrices D=",D) 
else 
disp("Addition and Subtraction of matrices 
not defined") 
end 
 

Question1: Find the addition and subtraction of matrices of 

൥
5 6 7
1 2 3
7 3 5

൩ and ൥
5 2 1
6 7 8
5 2 1

൩. 

Output 1: 

Enter the first matrix A= [5 6 7; 1 2 3; 7 3 5] 
   5.   6.   7. 
   1.   2.   3. 
   7.   3.   5. 
Enter the second matrix B= [5 2 1; 6 7 8; 5 2 1] 
   5.   2.   1. 
   6.   7.   8. 
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   5.   2.   1. 
  "Addition of two matrices C=" 
   10.   8.   8.  
   7.    9.   11. 
   12.   5.   6.  
"Sub of two matrices D=" 
   0.   4.   6. 
  -5.  -5.  -5. 
   2.   1.   4. 
 

Question 2: Find the addition and subtraction of matrices of 

൥
1 5 9
7 5 3
6 8 4

൩ and ቂ1 5 3
7 6 9

ቃ. 

Output 2: 

Enter the first matrix A= [1 5 9; 7 5 3; 6 8 4] 

   1.   5.   9. 

   7.   5.   3. 

   6.   8.   4. 

Enter the second matrix B= [1 5 3; 7 6 9] 

   1.   5.   3. 

   7.   6.   9. 

 "Addition and Subtraction of matrices not defined" 
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Program 2 

Computation of Multiplication of matrices 

clc 
A=input("Enter the first matrix A=") 
[m,n]=size(A) 
disp(A) 
B=input("Enter the second matrix B=") 
[k,l]=size(B) 
disp(B) 
ifn==kthen 
C=A*B 
disp("Multiplication of two matrices C=",C) 
else 
disp("Matrices of invalid order") 
end 
 

Question1: Find the multiplication of matrices of ൥
1 2 5
8 6 7
9 8 10

൩ and 

൥
6 8 4
5 9 8
5 11 12

൩. 

Output 1: 

Enter the first matrix A=[1 2 5; 8 6 7; 9 8 10]  

1.   2.   5.  

   8.   6.   7.  

   9.   8.   10. 

Enter the second matrix B=[ 6 8 4; 5 9 8; 5 11 12] 

6.   8.    4.  



I SEMESTER 
 

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 5 
  

   5.   9.    8.  

   5.   11.   12. 

  "Multiplication of two matrices C=" 

41.    81.    80.  

   113.   195.   164. 

   144.   254.   220. 

Question 2: Find the multiplication of matrices of ቂ
1 5 6
6 8 2

ቃ and 

ቂ
5 9 6
5 8 7

ቃ. 

Output 2: 

Enter the first matrix A=[1 5 6; 6 8 2] 

   1.   5.   6. 

   6.   8.   2. 

Enter the second matrix B=[ 5 9 6; 5 8 7] 

   5.   9.   6. 

   5.   8.   7. 

  "Matrices of invalid order" 
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Program 3 

Computation of Trace and Transpose of Matrix 

clc 
A=input("Enter the matrix A=") 
disp(A) 
[m,n]=size(A) 
ifm==nthen 
trace=0 
fori=1:m 
trace=trace+A(i,i) 
end 
disp("Trace of A=",trace) 
else 
disp("Invalid order") 
end 

Question1: Find the trace of matrix ൥
5 6 9
8 6 7

12 13 16
൩. 

Output 1: 
Enter the matrix A=[5 6 9; 8 6 7; 12 13 16] 
5.    6.    9.  
   8.    6.    7.  
   12.   13.   16. 
 
  "Trace of A=" 
 
27. 

Question 2: Find the trace of matrix ቂ 1 5 6
12 18 17

ቃ. 

Output 2: 
Enter the matrix A=[1 5 6; 12 18 17] 
1.    5.    6.  
   12.   18.   17. 
 
  "Invalid order" 
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clc 

A=input("Enter Matrix A=") 
disp(A) 
[m,n]=size(A) 
fori=1:n 
forj=1:m 
B(i,j)=A(j,i) 
end 
end 
disp("Transpose of A =",B) 
 

Question1: Find the trace of matrix ൥
7 8 6
5 9 3
7 5 4

൩. 

Output 1 

Enter Matrix A=[7 8 6; 5 9 3; 7 5 4] 
 
7.   8.   6. 
   5.   9.   3. 
   7.   5.   4. 
 
  "Transpose of A =" 
 
   7.   5.   7. 
   8.   9.   5. 
   6.   3.   4. 
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Program 4 

Computation of Rank of matrix and Row reduced 
Echelon form 

Rank of Matrix: 
clc 
A=input("Enter the matrix A=") 
[m,n]=size(A) 
disp(A) 
B=rank(A) 
disp("Rank of Ais",B) 
 

Question1: Find the rank ofmatix൥
1 5 6
7 5 3
7 6 4

൩. 

Output 1 
Enter the matrix A=[1 5 6; 7 5 3; 7 6 4] 
 
1.   5.   6. 
   7.   5.   3. 
   7.   6.   4. 
 
  "Rank of A is" 
 
3. 
 

Question 2: Find the rank of matrix ቂ1 5 6
7 5 3

ቃ. 

Output 2 
Enter the matrix A=[1 5 6; 7 5 3] 
 
   1.   5.   6. 
   7.   5.   3. 
 
  "Rank of A is" 
 
   2. 
 

Row Reduced Echelon Form: 
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clc 
A=input("Enter matrix A=") 
[m,n]=size(A) 
disp(A) 
B=rref(A) 
disp("Row Reduced Echelon From of A is",B) 
 
Output 1 
Enter matrix A=[ 1 2 3; 7 8 6; 4 8 6] 
 
   1.   2.   3. 
   7.   8.   6. 
   4.   8.   6. 
 
 "Row Reduced Echelon From of A is" 
 
   1.   0.   0. 
   0.   1.   0. 
   0.   0.   1. 
 
Output 2 
 
Enter matrix A=[2 3 5 4; 0 2 3 4; 4 8 13 12] 
 
   2.   3.   5.    4.  
   0.   2.   3.    4.  
   4.   8.   13.   12. 
 
  "Row Reduced Echelon From of A is" 
 
1.   0.   0.25  -1. 
   0.   1.   1.5    2. 
   0.   0.   0.     0. 
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Program 5 

Computation of Inverse of a Matrix using Cayley-
Hamilton theorem. 
 
clc 
A=input("Enter matrix A =") 
[m,n]=size(A) 
ifm==nthen 
p=poly(A,'x') 
disp("Characteristic equation of A=",p) 
eg=spec(A) 
disp("Eigen values of A=",eg) 
adj=det(A)*inv(A) 
disp("Adjoint of A=",adj) 
B=(1/det(A))*(A^(n-1)*trace(A)*A+trace(adj)*eye(n,n)) 
disp("Inverse of A=",B) 
else 
disp("Invalid order") 
end 
 

Question 1: Obtain the inverse of matrix ൥
1 1 1
1 2 3
1 3 4

൩ using Cayley 

Hamilton theorem. 
Output 1: 
 
Enter matrix A =[1 1 1; 1 2 3; 1 3 4] 
"Characteristic equation of A=" 
  1 +3x -7x² +x³ 
"Eigen values of A=" 
  -0.2184795 
   0.7024336 
   6.5160459 
"Adjoint of A=" 
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  -1.  -1.   1. 
  -1.   3.  -2. 
1.  -2.   1. 
"Inverse of A=" 
  -122.  -273.  -371.  
  -273.  -640.  -868.  
  -371.  -868.  -1186. 
 

Question 2: Obtain the inverse of matrix ቂ
1 1 1
1 2 3

ቃ using Cayley 

Hamilton theorem. 
Output 2: 
Enter matrix A =[1  1 1; 1 2 3] 
  "Invalid order" 
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Program 6 

Solving the system of homogeneous and non-
homogeneous linear algebraic equations. 
 

System of Homogeneous Linear Algebraic Equations: 
 
clc 
A=input("Enter the coefficient matrix A") 
disp(A) 
detA=det(A) 
disp("Determinant of A=",detA) 
ifdet(A)~=0then 
disp("A has trivial solution") 
else 
ifdet(A)==0then 
disp("A has infinite number of solution") 
end 
end 
 
Question 1: Find the solution of system of homogeneous 
equation 𝑥 − 2𝑦 + 𝑧 = 0, 𝑥 − 2𝑦 − 𝑧 = 0, 2𝑥 − 4𝑦 − 5𝑧 = 0. 
Output 1: 
 
Enter the coefficient matrix A[1 -2 1; 1 -2 -1; 2 -4 -5] 
1.  -2.   1. 
1.  -2.  -1. 
   2.  -4.  -5. 
  "Determinant of A=" 
   0. 
  "A has infinite number of solution" 
 
Question 2: Find the solution of system of homogeneous 
equation 𝑥 + 𝑦 + 3𝑧 = 0, 3𝑥 + 4𝑦 + 4𝑧 = 0, 7𝑥 + 16𝑦 + 12𝑧 = 0. 
Output 2: 
 
Enter the coefficient matrix A[1 1 3; 3 4 4; 7 16 12] 
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1.   1.    3.  
   3.   4.    4.  
   7.   16.   12. 
 
  "Determinant of A=" 
 
36.000000 
 
  "A has trivial solution" 
 
System of Non-Homogeneous Linear Algebraic 
Equations: 
clc 
A=input("Enter the coefficient matrix A") 
disp(A) 
[m,n]=size(A) 
B=input("Enter the matrix of constants B") 
disp(B) 
r1=rank(A) 
disp("Rank of A=",r1) 
r2=rank([AB]) 
disp("Rank of [A-B]=",r2) 
if(m>=n&r2<n)then 
disp("System is consistent and has infinitely many 
solutions") 
else 
if(m>=n&r1==r2)then 
disp("System is consistent and has unique solution") 
elseif(r1~=r2)then 
disp("System is inconsistent and has no solution") 
elseif(m<n)then 
disp("System has infinitely many solutions") 
end 
end 
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end 
end 
x=inv(A)*B 
disp("Solution of the system",x) 
 
Question 1: Find the solution of system of non-homogeneous 
equation 10𝑥 + 5𝑦 + 2𝑧 = 10, 5𝑥 + 2𝑦 + 3𝑧 = 5, 6𝑥 + 7𝑦 + 4𝑧 = 5. 
Output 1: 
Enter the coefficient matrix A[10 5 2; 5 2 3; 6 7 4] 
   10.   5.   2. 
   5.    2.   3. 
   6.    7.   4. 
Enter the matrix of constants B[10; 5; 5] 
10. 
   5.  
   5. 
  "Rank of A=" 
3. 
  "Rank of [A-B]=" 
3. 
  "System is consistent and has unique solution" 
 
  "Solution of the system" 
1.1170213 
  -0.212766  
  -0.0531915 
 
Question 2: Find the solution of system of non-homogeneous 
equation 𝑥 + 2𝑦 + 𝑧 = 2, 2𝑥 + 4𝑦 + 3𝑧 = 3, 3𝑥 + 6𝑦 + 5𝑧 = 4. 
Output 2: 
Enter the coefficient matrix A[1 2 1; 2 4 3; 3 6 5] 
   1.   2.   1. 
   2.   4.   3. 
   3.   6.   5. 
Enter the matrix of constants B[2; 3; 4] 
   2. 
   3. 
   4. 
  "Rank of A=" 
2. 
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  "Rank of [A-B]=" 
2. 
  "System is consistent and has infinitely many solutions" 
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Program 7 

Finding the nth Derivative of 𝒆𝒂𝒙, trigonometric and 
hyperbolic functions. 

Question 1: Write a maxima program to findthe nth 
derivative of 𝑒௔௫. 
Program: 
kill(all)$ 
y:%e^(a*x)$ 
n:4$ 
for i:1 thru n do ( 
y1:diff(y,x,i), 
print("The",i,"differentiation of ",y,"is ",y1))$ 
Output: 
"The"" "1" ""differentiation of "" "%e^(a*x)" ""is "" "a*%e^(a*x)" " 
"The"" "2" ""differentiation of "" "%e^(a*x)" ""is "" "a^2*%e^(a*x)" " 
"The"" "3" ""differentiation of "" "%e^(a*x)" ""is "" "a^3*%e^(a*x)" " 
"The"" "4" ""differentiation of "" "%e^(a*x)" ""is "" "a^4*%e^(a*x)" " 

 
 
Question 2: Write a maxima program to find the nth 
derivative of sin(𝑎𝑥 + 𝑏). 
Program: 
kill(all)$ 
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y:sin(a*x+b)$ 
n:5$ 
for i:1 thru n do ( 
y1:diff(y,x,i), 
print("The",i,"differentiation of ",y,"is ",y1))$ 
Output: 
"The"" "1" ""differentiation of "" "sin(a*x+b)" ""is "" "a*cos(a*x+b)" " 
"The"" "2" ""differentiation of "" "sin(a*x+b)" ""is "" "-
a^2*sin(a*x+b)" " 
"The"" "3" ""differentiation of "" "sin(a*x+b)" ""is "" "-
a^3*cos(a*x+b)" " 
"The"" "4" ""differentiation of "" "sin(a*x+b)" ""is "" "a^4*sin(a*x+b)" 
" 
"The"" "5" ""differentiation of "" "sin(a*x+b)" ""is "" "a^5*cos(a*x+b)" 
" 

 
Examples:Write a maxima program to find the nth 
derivative of the following: 

1. sinh(𝑎𝑥 + 𝑏) 
2. cosh(𝑎𝑥 + 𝑏) 
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Program 8 

Finding the nth Derivative of algebraic and 
logarithmic functions. 

Question 1: Write a maxima program to findthe nth 
derivative of algebraic function (𝑎𝑥 + 𝑏)௠. 
Program: 
kill(all)$ 
y:(a*x+b)^(m)$ 
n:5$ 
for i:1 thru n do ( 
y1:diff(y,x,i), 
print("The",i,"differentiation of ",y,"is ",y1))$ 
Output: 
"The"" "1" ""differentiation of "" "(a*x+b)^m" ""is "" 
"a*m*(a*x+b)^(m-1)" " 
"The"" "2" ""differentiation of "" "(a*x+b)^m" ""is "" "a^2*(m-
1)*m*(a*x+b)^(m-2)" " 
"The"" "3" ""differentiation of "" "(a*x+b)^m" ""is "" "a^3*(m-2)*(m-
1)*m*(a*x+b)^(m-3)" " 
"The"" "4" ""differentiation of "" "(a*x+b)^m" ""is "" "a^4*(m-3)*(m-
2)*(m-1)*m*(a*x+b)^(m-4)" " 
"The"" "5" ""differentiation of "" "(a*x+b)^m" ""is "" "a^5*(m-4)*(m-
3)*(m-2)*(m-1)*m*(a*x+b)^(m-5)" " 

 
  



I SEMESTER 
 

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 19 
  

Question 2: Write a maxima program to findthe nth 
derivative of logarithmic function log(𝑎𝑥 + 𝑏). 
Program: 
kill(all)$ 
y:log(a*x+b)$ 
n:5$ 
for i:1 thru n do ( 
y1:diff(y,x,i), 
print("The",i,"differentiation of ",y,"is ",y1))$ 
Output: 
"The"" "1" ""differentiation of "" "log(a*x+b)" ""is "" "a/(a*x+b)" " 
"The"" "2" ""differentiation of "" "log(a*x+b)" ""is "" "-a^2/(a*x+b)^2" 
" 
"The"" "3" ""differentiation of "" "log(a*x+b)" ""is "" 
"(2*a^3)/(a*x+b)^3" " 
"The"" "4" ""differentiation of "" "log(a*x+b)" ""is "" "-
(6*a^4)/(a*x+b)^4" " 
"The"" "5" ""differentiation of "" "log(a*x+b)" ""is "" 
"(24*a^5)/(a*x+b)^5" " 
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Program 9 

Finding the nth Derivative of 𝒆𝒂𝒙𝐬𝐢𝐧(𝒃𝒙 +  𝒄)and 
𝒆𝒂𝒙𝐜𝐨𝐬(𝒃𝒙 +  𝒄). 

Question 1: Write a maxima program to findthe nth 
derivative of 𝑒௔௫sin(𝑏𝑥 +  𝑐). 
Program: 
kill(all)$ 
y:exp(a*x)*sin(b*x+c)$ 
n:3$ 
for i:1 thru n do ( 
y1:diff(y,x,i), 
print("The",i,"differentiation of ",y,"is ",y1))$ 
Output: 
"The"" "1" ""differentiation of "" "%e^(a*x)*sin(b*x+c)" ""is "" 
"a*%e^(a*x)*sin(b*x+c)+b*%e^(a*x)*cos(b*x+c)" " 
"The"" "2" ""differentiation of "" "%e^(a*x)*sin(b*x+c)" ""is "" "-
b^2*%e^(a*x)*sin(b*x+c)+a^2*%e^(a*x)* 
sin(b*x+c)+2*a*b*%e^(a*x)*cos(b*x+c)" " 
"The"" "3" ""differentiation of "" "%e^(a*x)*sin(b*x+c)" ""is "" "-
3*a*b^2*%e^(a*x)*sin(b*x+c)+a^3*%e^(a*x)* 
sin(b*x+c)-b^3*%e^(a*x)*cos(b*x+c)+3*a^2*b*%e^(a*x)*cos(b*x+c)" 
" 

 

Example: Write a maxima program to findthe nth 
derivative of 𝑒௔௫cos(𝑏𝑥 +  𝑐). 
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Program 10 

Finding the Taylor’s and Maclaurin’s expansions of 
the given functions. 
Question 1: Write a maxima program to findthe Taylor’s 
and Maclaurin’s expansions of 𝑒௫ . 
Program: 
kill(all)$ 
y:exp(x)$ 
ts:taylor(y,x,2,4)$ 
ms:taylor(y,x,0,4)$ 
print("The Taylor's expansion of",y,"about x=2 is ")$ 
print(ts)$ 
print("The Maclaurian's expansion of",y,"is ")$ 
print(ms)$ 
Output: 
"The Taylor's expansion of"" "%e^x" ""about x=2 is "" " 
%e^2+%e^2*(x-2)+(%e^2*(x-2)^2)/2+(%e^2*(x-2)^3)/6+(%e^2*(x-
2)^4)/24+..." " 
"The Maclaurian's expansion of"" "%e^x" ""is "" " 
1+x+x^2/2+x^3/6+x^4/24+..." " 

 
Question 2: Write a maxima program to findthe Taylor’s 
and Maclaurin’s expansions of tanିଵ 𝑥. 
Program: 
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kill(all)$ 
y:exp(x)$ 
ts:taylor(y,x,3,6)$ 
ms:taylor(y,x,0,6)$ 
print("The Taylor's expansion of",y,"about x=3 is ")$ 
print(ts)$ 
print("The Maclaurian's expansion of",y,"is ")$ 
print(ms)$ 
Output: 
"The Taylor's expansion of"" "atan(x)" ""about x=3 is "" " 
atan(3)+(x-3)/10-(3*(x-3)^2)/100+(13*(x-3)^3)/1500-(3*(x-
3)^4)/1250+(79*(x-3)^5)/125000-(39*(x-3)^6)/250000+..." " 
"The Maclaurian's expansion of"" "atan(x)" ""is "" " 
x-x^3/3+x^5/5+..." " 

 
Example: Write a maxima program to findthe Taylor’s 
and Maclaurin’s expansions of1. log (𝑥) 2. sinିଵ 𝑥 3. 

log (sec 𝑥) 4. 
ଵ

ଵା௫
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Program 11 

Finding the angle between the radius vector and 
tangent. 
Question 1: Write a maxima program to find the angle 
between the radius vector and tangent 𝑟 = 𝑎(1 −  cos 𝑡). 
Program: 
kill(all)$ 
a:1$ 
r: a*(1- cos(t))$ 
d:diff(r,t)$ 
b:r*(1/d)$ 
ta:trigreduce(trigrat(b))$ 
print("The tan(angle) =",ta)$ 
print("The angle between the radius vector and tangent is 
",atan(ta))$ 
Output: 

"The tan(angle) ="" "tan(t/2)" " 
"The angle between the radius vector and 
tangent is "" "atan(tan(t/2))" " 

 
Question 2: Write a maxima program to findthe angle 
between the radius vector and tangent𝑟 = 𝑎𝑡. 
Question 3: Write a maxima program to findthe angle 
between the radius vector and tangent𝑟 = 𝑎(1 +  cos 𝑡). 
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Program: 
kill(all)$ 
a:1$ 
r(t):= a*(1+cos(t))$ 
dt:ratsimp(diff(r(t),t))$ 
b(t):=r(t)*(1/dt)$ 
ta(t):=trigreduce(trigrat(b(t)))$ 
print("The tan(angle) =",ta(t))$ 
print("The angle between the radius vector and tangent is 
",atan(ta(t)))$ 
a1:at(ta(t),[t=%pi/2])$ 
print("The tan(angle) =",a1)$ 
d:atan2(1,a1)$ 
print("The angle between the radius vector and tangent 
at t=pi/2 is ",d)$ 
Output: 
"The tan(angle) ="" "-cot(t/2)" " 
"The angle between the radius vector and tangent is "" "-
atan(cot(t/2))" " 
"The tan(angle) ="" "-1" " 
"The angle between the radius vector and tangent at 
t=pi/2 is "" "(3*%pi)/4" " 
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Program 12 

Finding the curvatures of the given curves. 
Question 1: Write a maxima program to find the radius 
of curvature and curvature of the curve𝑦ଶ = 4𝑎𝑥 at 𝑥 =

1and 𝑎 = 1. 
Program: 
kill(all)$ 
a:1$ 
y:sqrt(4*a*x)$ 
y1:ratsimp(diff(y,x,1))$ 
y2:ratsimp(diff(y,x,2))$ 
rc:ratsimp((1+y1^2)^(3/2)/y2)$ 
k:ratsimp(1/rc)$ 
print("Radius of curvature at any point is ",rc)$ 
print("Radius of curvature at x=1 is ",at(rc,[x=1]))$ 
print("Curvature of the curve at any point is ",k)$ 
print("Curvature of the curve at  x=1 is ",at(k,[x=1]))$ 
Output: 
"Radius of curvature at any point is "" "-
2*x^(3/2)*((x+1)/x)^(3/2)" " 
"Radius of curvature at x=1 is "" "-2^(5/2)" " 
"Curvature of the curve at any point is "" "-
1/(2*x^(3/2)*((x+1)/x)^(3/2))" " 
"Curvature of the curve at  x=1 is "" "-1/2^(5/2)" " 
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Question 2: Write a maxima program to find the radius 

of curvature and curvature of the curve√𝑥 + ඥ𝑦 = 1at 

ቀ
ଵ

ସ
,

ଵ

ସ
ቁ.  

Program: 
kill(all)$ 
y:(1-sqrt(x))^2$ 
y1:ratsimp(diff(y,x,1))$ 
y2:ratsimp(diff(y,x,2))$ 
rc:ratsimp((1+y1^2)^(3/2)/y2)$ 
k:ratsimp(1/rc)$ 
print("Radius of curvature at any point is ",rc)$ 
print("Curvature of the curve at any point is ",k)$ 
print("Radius of curvature at x=1/4 & y=1/4 is 
",at(rc,[x=1/4,y=1/4]))$ 
print("Curvature of the curve at (1/4,1/4) is 
",at(k,[x=1/4,y=1/4]))$ 
Output: 
"Radius of curvature at any point is "" "2*(-(-
2*x+2*sqrt(x)-1)/x)^(3/2)*x^(3/2)" " 
"Curvature of the curve at any point is "" "1/(2*(-(-
2*x+2*sqrt(x)-1)/x)^(3/2)*x^(3/2))" " 
 
"Radius of curvature at x=1/4 & y=1/4 is "" "1/sqrt(2)" " 
"Curvature of the curve at (1/4,1/4) is "" "sqrt(2)" " 
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Question 3: Write a maxima program to find the radius 
of curvature and curvature of the curve𝑥ଷ + 𝑦ଷ − 3𝑎𝑥𝑦 =

0at ቀ
ଷ௔

ଶ
,

ଷ௔

ଶ
ቁ.  

Program: 
kill(all)$ 
f(x,y):=x^3+y^3-3*a*x*y$ 
fx:ratsimp(diff(f(x,y),x,1))$ 
fxx:ratsimp(diff(f(x,y),x,2))$ 
fy:ratsimp(diff(f(x,y),y,1))$ 
fyy:ratsimp(diff(f(x,y),y,2))$ 
fxy:ratsimp(diff(fy,x,1))$ 
rc:ratsimp(-
(fx^2+fy^2)^(3/2)/(fx^2*fyy2*fx*fy*fxy+fy^2*fxx))$ 
k:ratsimp(1/rc)$ 
print("fx=",fx,"fy=",fy,"fxy=",fxy,"fxx=",fxx,"fyy=",fyy)$ 
print("Radius of curvature at x=3a/2 & y=3a/2 is 
",at(rc,[x=3*a/2,y=3*a/2]))$ 
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print("Curvature of the curve at (3a/2,3a/2) is 
",at(k,[x=3*a/2,y=3*a/2]))$ 
Output: 
"fx="" "3*x^2-3*a*y" ""fy="" "3*y^2-3*a*x" ""fxy="" "-3*a" 
""fxx="" "6*x" ""fyy="" "6*y" " 
"Radius of curvature at x=3a/2 &y=3a/2 is "" "-
(3*a)/2^(7/2)" " 
"Curvature of the curve at (3a/2,3a/2) is "" "-
2^(7/2)/(3*a)" " 
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Theory Based Practical’s On Algebra-II and Calculus-II 

Lab Practical’s:  

Part A:  

1. Program for verification of binary operations. 
2. Computation of identity and inverse elements of a 

group. 
3. Program to construct Cayley’s table and test abelian 

for given finite set. 
4. Program to find all possible cosets of the given finite 

group. 
5. Program to find generators and corresponding 

possible subgroups of a cyclic group. 
6. Programs to verification of Lagrange’s theorem with 

suitable examples.  

Part B:  

7. Program to verify the Euler’s 𝜙 function for a given 
finite group. 

8. Program to verify the Euler’s theorem and its 
extension. 

9. Programs to construct series using Maclaurin’s 
expansion for functions of two variables. 

10. Program to evaluate the line integrals with constant 
and variable limits. 

11. Program to evaluate the Double integrals with 
constant and variable limits. 

12. Program to evaluate the Triple integrals with 
constant and variable limits. 

  



II SEMESTER 
 

BLDEA’s SB Arts and KCP Science College, Vijayapur Page 2 
 

Program 1 

Program for verification of Binary operation. 
A binary operation ∗ in a set 𝐺 is a mapping ∗∶  𝐺 × 𝐺 → 𝐺. 
Question 1: Write a maxima program to verify addition 
modulo 6 i.e. 𝐺 = {0, 1, 2, 3, 4, 5} is a binary operation or 
not. 
Program: 

kill(all)$ 
 S:{0,1,2,3,4,5}$ 
 bo(a,b):=mod(a+b,6)$ 
 flag:1$ 
 for a in S do( 
 for b in S do ( 
 if not elementp(bo(a,b),S) then flag:0 ))$ 
 if flag = 1 then 
 disp("Given operation is a binary operation")  
 else 
 disp("Given operation is not binary operation")$ 
Output: 
"Given operation is a binary operation" 

 
Examples:Verify binary operations for the following 
group  

1. 𝐺 =  {0,1,2} under addition modulo 3 
2. 𝐺 =  {0,1,2,3} under addition modulo 4 
3. 𝐺 =  {0,1,2,3,4,5,6} under multiplication modulo 7 
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Program 2 

Computation of identity and inverse elements of a 
group. 
 An element 𝑒 is called an identity element of the non-

empty set 𝐺if ∀𝑎 ∈ 𝐺 ⇒ 𝑎 ∗ 𝑒 =  𝑒 ∗ 𝑎 =  𝑎.  
 An element 𝑎ିଵ is the inverse of an element 𝑎 in 𝐺 if 

∀𝑎 ∈ 𝐺 ⇒ 𝑎 ∗ 𝑎ିଵ  =  𝑎ିଵ ∗ 𝑎 =  𝑒. 
Question 1: Write a maxima program to find the identity 
and inverse element of the group 𝑧 = {1,5,7,11} under 
multiplication modulo 12. 
Program: 
 kill(all)$ 
 z:{1,5,7,11}$ 
 bo(a,b):=mod(a*b,12)$ 
 e:a$ 
 fori in z do  
 ( 
 flag:1, 
 for j in z do 
 ifbo(i,j)#j and bo(j,i)# j then 
 flag:0, 
 if flag=1 then  
 e:i 
  )$ 
 if e # x then  
 print("The identity element is",e) 
 else 
 print("The identity element does not exist")$ 
 w: { }$ 
 fori in z do  
 (  
 for j in z do  
 ifbo(i, j)=e or bo(j, i)=e then  
 ( 
 print("Inverse of",i,"is",j), 
 w :adjoin(i,w) 
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 ) 
 )$ 
 ifsetequalp(z,w) then  
 print("Inverse law is satisfied") 
 else 
 print("inverse law is not satisfied")$ 
Output: 
"The identity element is"" "1" " 
"Inverse of"" "1" ""is"" "1" " 
"Inverse of"" "5" ""is"" "5" " 
"Inverse of"" "7" ""is"" "7" " 
"Inverse of"" "11" ""is"" "11" " 
"Inverse law is satisfied"" " 
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Examples:Write a maxima program to find the identity 
and inverse element of the following group: 
1. 𝐺 = {0,1,2,3,4}under addition modulo 5.  
2. 𝐺 = {2,4,6,8}under multiplication modulo 10.  
3. 𝑍ହ –  {0} under multiplication modulo 5. 
4. 𝐺 = {1,3,7,9}under multiplication modulo 10. 
5. (𝑍଻, +଻). 
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Program 3 

Program to construct Cayley’s table and test abelian 
for given finite set. 
 If 𝐺 is a finite group with the binary operation ∗, the 

Cayley table of 𝐺 is a table with rows and columns 
labelled by the elements of the group. If entry in the 
row is 𝑔 and column is ℎ, then corresponding entry of 
table is 𝑔 ∗ ℎ.  

 A group G with binary operation ∗, is said to be 
abelian group if ∀𝑎, 𝑏 ∈ 𝐺, 𝑎 ∗ 𝑏 =  𝑏 ∗ 𝑎. 

 Group is abelian if Cayley table is symmetric along its 
diagonal axis. 

Question 1: Write a maxima program to construct 
Cayley’s table and test abelianfor (𝑍ଷ, +ଷ) 
Program: 
kill(all)$ 
z:{0,1,2}$ 
print("Given set is",z)$ 
n:3$ 
CT:zn_add_table(n)$ 
print("Cayley's table under addition modulo 3 is",CT)$ 
TCT:transpose(CT)$ 
print("The transpose of matrix CT is",TCT)$ 
if CT=TCT then 
disp("Cayley table is symmetric, Group is abelian") 
else 
disp("Cayley table not is symmetric, Group is not 
abelian")$ 
Output: 
"Given set is"" "{0,1,2}" " 
"Cayley's table under addition modulo 3 is"" "matrix( 
  [0, 1, 2], 
  [1, 2, 0], 
  [2, 0, 1] 
 )" " 
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"The transpose of matrix CT is"" "matrix( 
  [0, 1, 2], 
  [1, 2, 0], 
  [2, 0, 1] 
 )" " 
"Cayley table is symmetric, Group is abelian" 

 
Examples: 

1. Construct(𝑍଼, +଼) 
2. Construct (𝑍ଵଶ, +ଵଶ) 
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Program 4 

Program to find all possible cosets of the given finite 
group. 
 Let 𝐻 be any subgroup of a group 𝐺 and 𝑎 be any 

element of 𝐺. Then the set,𝐻𝑎 = {ℎ𝑎: ℎ𝜖𝐻} is called 
right coset of 𝐻 in 𝐺 genarated by 𝑎 and the set 
𝑎𝐻 = {𝑎ℎ: ℎ𝜖𝐻}is called left coset of 𝐻 in 𝐺 genarated 
by 𝑎 with respect to multiplicative binary operation. 

 𝐻 + 𝑎 = {ℎ + 𝑎 ∶ ℎ𝜖𝐻 }is right coset and 𝑎 + 𝐻 = {𝑎 + ℎ ∶
ℎ𝜖𝐻} is left coset of 𝐻 with respect to additive binary 
operation. 

Question 1: Write a maxima program to find all distinct 
left cosest of the subgroup H = {0 , 4 , 8} in the group 
(𝑍ଵଶ, +ଵଶ) and find the index. 
Program: 

kill(all)$ 
 G:{0,1,2,3,4,5,6,7,8,9,10,11}$ 
 H:{0,4,8}$ 
 bo(x,y):=mod(x+y,12)$ 
 c:{ }$ 
 fori in G do( 
 s:{ }, 
 for j in H do  
 s: adjoin(bo(j,i),s), 
 c: adjoin(s,c))$ 
 print("Left cosets= ",c)$ 
 print("The index of H in G is", cardinality(c))$ 
Output: 
"Left cosets= "" "{{0,4,8},{1,5,9},{2,6,10},{3,7,11}}" " 
"The index of H in G is"" "4" " 
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Examples: 

1. Find all the rightcosets of the subgroup 𝐻 = {0,3} in 
the group (𝑍଺, +଺). 

2. Find all the distinct cosets of 𝐻 = {0,3,6}in (𝑍ଽ, +ଽ). 
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Program 6 

Programs to verification of Lagrange’s theorem with 
suitable examples. 

LagrangesThoerem: If𝐻 is a sunbgroup of finite graoup 
𝐺, then𝑂(𝐻) divides 𝑂(𝐺). 

Question 1: Write a maxima program toverification of 
Lagrange's theorem with 𝐺 = {1, −1, 𝑖, −𝑖}𝑠𝑢𝑏𝑠𝑒𝑡𝐻 =

{1, −1}𝑜𝑓𝐺 under multiplication. 

Program: 
kill(all)$ 

 G:set(1, -1, %i, -%i)$ 
 print("Group G =",G)$ 
 H:set(1, -1)$ 
 print("Sub group H =",H)$ 
 n:length(G)$ 
 print("Order of group G = O(G)=",n)$ 
 m:length(H)$ 
 print("Order of sub group H = O(H)=",m)$ 
 r: mod(n,m)$ 
 if r=0 then 
 disp("O(H) devides O(G), Lagrange's theorem 
verified") 
 else 
 disp("Lagrange's theorem is not verified")$ 
"Group G ="" "{-1,1,-%i,%i}" " 
"Sub group H ="" "{-1,1}" " 
"Order of group G = O(G)="" "4" " 
"Order of sub group H = O(H)="" "2" " 
"O(H) devides O(G), Lagrange's theorem verified" 
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Examples:Verify Lagrange's theorem for the following: 
1. 𝐺 = {1, −1, 𝑖, −𝑖}is a group and subset 𝐻 = {1, 𝑖}under 

multiplication. 
2. 𝐺 = {1, −1, 𝑖, −𝑖}is a group and subset 𝐻 = {1, −𝑖}under 

multiplication. 
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Program 7 

Program to verify the Euler’s 𝜙 function for a given 
finite group. 

Euler’s number:Let ∅ (1) = 1, and for any integer 𝑛 > 1, 
let ∅ (𝑛) denote the number of positive integers less than 
𝑛 and relatively prime to 𝑛. 

n 1 2 3 4 5 6 7 9 10 
Positive 
integers 
less than 
𝒏 and 
relatively 
prime to 
𝒏. 

1 1 1,2 1,3 
1,3, 
4 

1,5 
1,2, 
3,4, 
5,6 

1,2, 
4,5, 
7,8 

1,3, 
7,9 

∅ (𝒏) 1 1 2 2 3 2 6 6 4 
 

Theorem: The set of all positive integers lessthan n and 
relatively prime to n form a group under multiplication modulo n. 

Example:𝐺 = {1, 2, 3, 4, 5, 6} is a group under multiplication 
modulo 7. 

Euler’s Theorem: Let 𝑎 and 𝑛 be integers such that 

𝑛 >  0and 𝑔𝑐𝑑(𝑎, 𝑛)  =  1. Then 𝑎∅(௡) ≡  1 (𝑚𝑜𝑑 𝑛). 

Question 1: Write a maxima program to verify the Euler’s 𝜙 

function for a given finite group 𝐺 = {1, 2, 3, 4, 5, 6} under 
multiplication modulo 7. 

Program: 

kill(all)$ 

 G:[1, 2, 3, 4, 5, 6]$ 

 n:7$ 
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 flag:1$ 

 print("Given group G=",G)$ 

 print("n=",n)$ 

 φ:length(G)$ 

 print("O(G)= φ(10)=",φ)$ 

 fori thru length(G) do( 

 if not mod(G[i]^φ,n)=1 then flag:0)$ 

 if flag=1 then 

 print ("Euler's theorem is verified") 

 else 

 print("Euler's theorem is not verified")$ 

Output: 
"Given group G="" "[1,2,3,4,5,6]" " 

"n="" "7" " 

"O(G)= φ(10)="" "6" " 

"Euler's theorem is verified"" " 
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Examples:Write a maxima program to verify the Euler’s 𝜙 
function for a given finite group 

1. 𝐺 = {1,2, 4, 5, 7, 8} under multiplication modulo 9. 
2. 𝐺 = {1, 5} under multiplication modulo 6. 
3. 𝐺 = {1, 3} under multiplication modulo 4. 
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Program 8 

Program to verify the Euler’s theorem and its 
extension. 
Homogeneous Function: A function 𝑢 = 𝑓(𝑥, 𝑦) is said to 
homogeneousfunctionof degree𝑛 in 𝑥 & 𝑦 if anyone the 
following condition satisfies: 

(i) 𝑓(𝑥, 𝑦) = 𝑥௡𝐹 ቀ
௬

௫
ቁfor some function F. 

(ii) 𝑓(𝑥, 𝑦) = 𝑦௡𝐹 ቀ
௫

௬
ቁfor some function F. 

(iii) 𝑓(𝑡𝑥, 𝑡𝑦) = 𝑡௡𝑓(𝑥, 𝑦). 
 
Euler’s Theorem: If 𝑢 = 𝑓(𝑥, 𝑦) is a homogeneous 
function of degree 𝑛 in 𝑥 & 𝑦, then  

𝑥
డ௨

డ௫
+ 𝑦

డ௨

డ௬
= 𝑛 ∙ 𝑢. That is 𝑥𝑢௫ + 𝑦𝑢௬ = 𝑛 ∙ 𝑢. 

Question 1: Verification of Euler’s theorem for given 
homogeneous function 𝑢 = 𝑎𝑥ଶ + 2ℎ𝑥𝑦 + 𝑏𝑦ଶ. 

Program: 

  kill(all)$ 
  u:a*x*x+2*h*x*y+b*y*y$ 
  print("u = ",u)$ 
  n:2$ 
  ux:diff(u,x,1)$ 
  uy:diff(u,y,1)$ 
  print("ux =",ux)$ 
  print("uy =",uy)$ 
  lhs:ratsimp(x*ux+y*uy)$ 
  rhs:ratsimp(n*u)$ 
  print("LHS =",lhs)$ 
  print("RHS =",rhs)$ 
  if lhs=rhs then 
  print("Euler’s Theorem is verified") 
  else 
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  print("Euler’s Theorem is not verified")$ 
Output: 
"u = "" "b*y^2+2*h*x*y+a*x^2" " 
"ux ="" "2*h*y+2*a*x" " 
"uy ="" "2*b*y+2*h*x" " 
"LHS ="" "2*b*y^2+4*h*x*y+2*a*x^2" " 
"RHS ="" "2*b*y^2+4*h*x*y+2*a*x^2" " 

 

Examples: Verification of Euler’s theorem for following 
homogeneous functions: 

1. 𝑢 =
௫௬

௫ା௬
 

2. 𝑢 =
௫యା௬య

௫ା௬
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3. 𝑢 = sinିଵ ቀ
௫

௬
ቁ + tanିଵ ቀ

௬

௫
ቁ. 

4. 𝑢 =
௫యା௫మ௬ି௫௬మାଶ௬య

௫ା௬
 

 

 

Euler’s Extension Theorem: If 𝑢 = 𝑓(𝑥, 𝑦) is a 
homogeneous function of degree 𝑛 in 𝑥 & 𝑦, then  

𝑥ଶ
𝜕ଶ𝑢

𝜕𝑥ଶ
+ 2𝑥𝑦

𝜕ଶ𝑢

𝜕𝑥𝜕𝑦
+ 𝑦ଶ

𝜕ଶ𝑢

𝜕𝑦ଶ
= 𝑛(𝑛 − 1) ∙ 𝑢. 

That is𝑥ଶ𝑢௫௫ + 2𝑥𝑦𝑢௫௬ + 𝑦ଶ𝑢௬௬ = 𝑛(𝑛 − 1) ∙ 𝑢. 

Question 2: Verification of Euler’s Extension theorem for 
given homogeneous function 𝑢 = 𝑎𝑥ଶ + 2ℎ𝑥𝑦 + 𝑏𝑦ଶ. 

Program: 

 kill(all)$ 
 u:a*x*x+2*h*x*y+b*y*y$ 
 print("u = ",u)$ 
 n:2$ 
 ux:diff(u,x,1)$ 
 uy:diff(u,y,1)$ 
 uxx:diff(ux,x,1)$ 
 uyy:diff(uy,y,1)$ 
 uxy:diff(uy,x,1)$ 
 print("ux =",ux)$ 
 print("uy =",uy)$ 
 print("uxx =",uxx)$ 
 print("uyy =",uyy)$ 
 print("uxy =",uxy)$ 
 lhs:ratsimp(x*x*uxx+2*x*y*uxy+y*y*uyy)$ 
 rhs:ratsimp(n*(n-1)*u)$ 
 print("LHS =",lhs)$ 
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 print("RHS =",rhs)$ 
 if lhs=rhs then 
 print("Euler’s Extension Theorem is verified") 
 else 
 print("Euler’s Extension Theorem is not verified")$ 
Output: 
"u = "" "b*y^2+2*h*x*y+a*x^2" " 
"ux ="" "2*h*y+2*a*x" " 
"uy ="" "2*b*y+2*h*x" " 
"uxx ="" "2*a" " 
"uyy ="" "2*b" " 
"uxy ="" "2*h" " 
"LHS ="" "2*b*y^2+4*h*x*y+2*a*x^2" " 
"RHS ="" "2*b*y^2+4*h*x*y+2*a*x^2" " 
"Euler’s Extension Theorem is verified"" " 
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Examples: Verification of Euler’s Extension theorem for 
following homogeneous functions: 

1. 𝑢 =
௫యା௬య

௫ା௬
 

2. 𝑢 = sinିଵ ቀ
௫

௬
ቁ + tanିଵ ቀ

௬

௫
ቁ 

3. 𝑢 =
௫యା௫మ௬ି௫௬మାଶ௬య

௫ା௬
 

4. 𝑢 = 𝑥ଷ + 𝑦ଷ 
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Program 9 

Program to construct series using Maclaurin’s 
expansion for function of two variables. 
Question 1: Write a maxima program to find Maclaurin’s 
expansion of 𝑢 = 𝑒௫ cos 𝑦. 

Program: 
kill(all)$ 

 u:%e^(x)*(cos(y))$ 
 print("The Maclurian's expansion of",u," is")$ 
 s:taylor(u,[x,y],0,4)$ 
 print(s)$ 
Output: 
"The Maclurian's expansion of"" "%e^x*cos(y)" "" is"" " 
1+x+(x^2-y^2)/2+(x^3-3*y^2*x)/6+(x^4-
6*y^2*x^2+y^4)/24+..." " 

 
Examples:Write a maxima program to find Maclaurin’s 
expansion for following functions: 

1. 𝑢 = 𝑒௫ log(1 + 𝑦) 
2. 𝑢 = 𝑒(௫మା௬మ) 
3. 𝑢 = sin(𝑥 + 𝑦) 
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Program 10 

Program to evaluate the line integrals with constant 
and variable limits. 
Question 1: Write a maxima program to evaluate line 

integral with constant limits∫ 𝑦 𝑑𝑥 − 𝑥 𝑑𝑦
௖

 along the curve 

𝑐: 𝑦 = 𝑥ଶ from (0, 0) to (1, 1). 

Program: 
kill(all)$ 

 depends (y,x)$ 
 y:x^2$ 
 Integrand:y*diff(x,x)-x*diff(y,x)$ 
 I:integrate (Integrand,x,0,1)$ 
 print("Integrand =",Integrand)$ 
 print("Integral value = ",I)$ 
Output: 
"Integrad ="" "-x^2" " 
"Integral value"" "-1/3" " 

 
Examples:Write a maxima program to evaluate following 
line integral with constant limits: 
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1. ∫ (3𝑥 + 𝑦)𝑑𝑥 + (2𝑦 − 𝑥)𝑑𝑦
௖

 along the curve 𝑦 = 𝑥ଶ + 1 
form (0, 1) to (3, 10). 

2. ∫ (2𝑥𝑦 − 1)𝑑𝑥 + (𝑥ଶ + 1)𝑑𝑦
௖

 along the parabola 
𝑦 = 𝑥 + 1 form (0, 1) to (2, 3). 

3. ∫ (𝑥 + 𝑦)𝑑𝑥 + (𝑦 − 𝑥)𝑑𝑦
௖

 along the parabola 𝑦ଶ = 𝑥 
form (1, 1) to (4, 2). 

Question 2: Write a maxima program to evaluate line 

integral with variable limits∫ 𝑥𝑦 𝑑𝑥 + 𝑥ଶ𝑧 𝑑𝑦 + 𝑥𝑦𝑧 𝑑𝑧
௖

 
along the curve 𝑐: 𝑥 = 𝑒௧ , 𝑦 = 𝑒ି௧ , 𝑧 = 𝑡ଶand 1 ≤ 𝑡 ≤ 2. 
Program: 

kill(all)$ 
 depends([x,y,z],t)$ 
 x:%e^t$ 
 y:%e^(-t)$ 
 z:t^2$ 
 Integrand: x*y* diff(x,t)+x^2*z*diff(y,t)+x*y*z*diff(z,t)$ 
 I:integrate(Integrand,t,1,2)$ 
 print("Integrand =",Integrand)$ 
 print("Integral value = ",I)$ 
Output: 
"Integrand ="" "-t^2*%e^t+%e^t+2*t^3" " 
 
"Integral value = "" "-(2*%e^2-15)/2" " 
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Examples:Write a maxima program to evaluate following 
line integral with variable limits: 

1. ∫ (3𝑥 − 2𝑦)𝑑𝑥 + (𝑦 + 2𝑧)𝑑𝑦 − 𝑥ଶ 𝑑𝑧
௖

where𝑐 is the curve 
given by 𝑥 = 𝑡, 𝑦 = 2𝑡ଶ, 𝑧 = 3𝑡ଷ and 0 ≤ 𝑡 ≤ 1. 

2. ∫ (𝑥ଶ − 𝑦)𝑑𝑥 + (𝑦ଶ + 𝑥)𝑑𝑦
௖

where𝑐 is the curve given by 
𝑥 = 𝑡, 𝑦 = 𝑡ଶ + 1 and 0 ≤ 𝑡 ≤ 1. 

3. ∫ 𝑥 𝑑𝑥 − 𝑦 𝑑𝑦
௖

along the circle 𝑐: 𝑥 = 𝑎 cos 𝑡 , 𝑦 = 1 + sin 𝑡 

and −
గ

ଶ
≤ 𝑡 ≤ 0. 
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Program 11 

Program to evaluate the double integrals with 
constant and variable limits. 
Question 1: Write a maxima program to evaluate double 

integral with constant limits∫ ∫ 𝑥ଷ𝑒௬𝑑𝑥 𝑑𝑦
ଶ

଴

ଵ

଴
. 

Program: 
(%i4) kill(all)$ 
  Integrand:x^3*%e^(y)$ 
  I:integrate(integrate(Integrand,x,0,2),y,0,1)$ 
  print("Integrand =",Integrand)$ 
  print("Integral value = ",I)$ 
Output: 
"Integrand ="" "x^3*%e^y" " 
"Integral value = "" "4*(%e-1)" " 

 
Examples:Write a maxima program to evaluate following 
double integral with constant limits: 

1. ∫ ∫ (𝑥 + 𝑦)𝑑𝑥𝑑𝑦
ଶ

଴

ଵ

଴
 

2. ∫ ∫ (𝑥ଶ + 𝑦ଶ)𝑑𝑦𝑑𝑥
௕

଴

௔

଴
 

3. ∫ ∫ sin 𝑥 cos 𝑦 𝑑𝑥𝑑𝑦
ഏ

ల
଴

ഏ

మ
଴

 

4. ∫ ∫
ଵ

(௫ା௬ାଵ)
𝑑𝑥𝑑𝑦

ଵ

଴

ଵ

଴
 

5. ∫ ∫ (𝑥𝑦 + 𝑒௬)𝑑𝑥𝑑𝑦
ସ

ଵ

ସ

ଷ
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Question 2: Write a maxima program to evaluate double 

integral with variable limits∫ ∫ 𝑥𝑦 𝑑𝑦 𝑑𝑥
௫

଴

ସ

ଵ
. 

Program: 
kill(all)$ 

 Integrand:x*y$ 
 I: integrate(integrate(Integrand,y,0,x),x,1,4)$ 
 print("Integrand =",Integrand)$ 
 print("Integral value = ",I)$ 
Output: 
"Integrand ="" "x*y" " 
"Integral value = "" "255/8" " 

 
Examples:Write a maxima program to evaluate following 
double integral with variable limits: 

1. ∫ ∫
ௗ௬ ௗ௫

ଵା௫మା௬మ

√ଵା௫మ

଴

ଵ

଴
 

2. ∫ ∫  𝑥(𝑥ଶ + 𝑦ଶ)𝑑𝑦𝑑𝑥
௫మ

଴

ଶ

଴
 

3. ∫ ∫ ඥ𝑎ଶ − 𝑥ଶ − 𝑦ଶ𝑑𝑦𝑑𝑥
√௔మି௫మ

଴

௔

଴
 

4. ∫ ∫  𝑑𝑥𝑑𝑦
ୱ୧୬ ௬

଴

గ

଴
 

5. ∫ ∫ 𝑒
ೣ

೤𝑑𝑦𝑑𝑥
௬మ

଴

ଵ

଴
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Program 12 

Program to evaluate the triple integrals with constant 
and variable limits. 
Question 1: Write a maxima program to evaluate triple 

integral with constant limits∫ ∫ ∫ (𝑥ଶ + 𝑦ଶ + 𝑧ଶ)𝑑𝑥 𝑑𝑦 𝑑𝑧
ଵ

ିଵ

ଵ

଴

ଶ

ଵ
. 

Program: 
(%i4) kill(all)$ 
  Integrand:x^2+y^2+z^2$ 

I:integrate(integrate(integrate(Integrand, x, -
1,1),y,0,1),z,1,2)$ 

  print("Integrand =",Integrand)$ 
  print("Integral value = ",I)$ 
Output: 

"Integrand ="" "z^2+y^2+x^2" " 
"Integral value = "" "6" " 

 
Examples:Write a maxima program to evaluate following 
triple integral with constant limits: 

1. ∫ ∫ ∫ 𝑒௫ା௬ା௭𝑑𝑥 𝑑𝑦 𝑑𝑧
ଵ

଴

ଵ

଴

ଵ

ଵ
 

2. ∫ ∫ ∫ 𝑥ଶ𝑦𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧
ଷ

ଵ

ଶ

଴

ଵ

ଵ
 

3. ∫ ∫ ∫
ଵ

௫௬௭
𝑑𝑥 𝑑𝑦 𝑑𝑧

ଷ

ଶ

ିଵ

ିଶ

ଶ

ଵ
 

4. ∫ ∫ ∫ ቀ
௫

௬
+

௬

௭
+

௭

௫
ቁ 𝑑𝑧 𝑑𝑦 𝑑𝑥

ଶ

ଶ

ଶ

ଵ

ଶ

ଵ
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Question 2: Write a maxima program to evaluate triple 

integral with variable limits∫ ∫ ∫ (𝑥 + 𝑦 + 𝑧)𝑑𝑥 𝑑𝑦 𝑑𝑧
௫ା௭

௫ି௭

௭

଴

ଵ

ିଵ
 

Program: 
kill(all)$ 

 Integrand:x+y+z$ 
I:integrate(integrate(integrate(Integrand,x,x-z 
,x+z),y,0,z),z,-1,1)$ 

 print("Integrand =",Integrand)$ 
 print("Integral value = ",I)$ 
Output: 
"Integrand ="" "z+y+x" " 
"Integral value = "" "(8*x+3)/6-(4*x-9)/6" " 

 
Examples:Write a maxima program to evaluate following 
triple integral with variable limits: 

1. ∫ ∫ ∫ 𝑒௫ା௬ା௭𝑑𝑥 𝑑𝑦 𝑑𝑧
ଵ

଴

ଵ

଴

ଵ

ଵ
 

2. ∫ ∫ ∫ 𝑥𝑦𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥
ඥ௔మି௫మି௬మ

଴

√௔మି௫మ

଴

௔

଴
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Program I: Verification of Exact Differential Equation.  

Maxima code to verify the exactness of  the differential equation  

(𝒙𝟐 − 𝒂𝒚)𝒅𝒙 − (𝒂𝒙 − 𝒚𝟐)𝒅𝒚 = 𝟎 .  

 

kill(all)$ 

z:(x^2−a·y)·dx−(a·x−y^2)·dy$ 

m:coeff(z,dx)$ 

n:coeff(z,dy)$ 

print("M=",m)$ 

print("N=",n)$ 

my:ratsimp(diff(m,y))$ 

nx:ratsimp(diff(n,x))$ 

print("Partial derivative of m wrt y=",my)$ 

print("Partial derivative of n wrt x=",nx)$ 

ny:coeff(n,x,0)$ 

intm:integrate(m,x)$ 

intn:integrate(ny,y)$ 

if(my=nx) then 

( 

disp("The given equation is exact"), 

zs:intm+intn, 

print("The solution is:"), 

disp(zs+c) 

) 

else 

disp("The given equation is not exact"); 
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Output:  

𝑀 = (𝒙𝟐 − 𝒂𝒚) 

𝑁 = (𝒂𝒙 − 𝒚𝟐) 

Partial derivative of m wrt y= -a 

Partial derivative of n wrt x= -a  

The given equation is exact 

The solution is:  

𝑦ଷ

3 
− 𝑎𝑥𝑦 +

𝑥ଷ

3
+ 𝑐  

 

Example:  

1. Solve (3𝑥ଶ + 6𝑥𝑦ଶ)𝑑𝑥 + (6𝑥𝑦ଶ + 4𝑦ଷ)𝑑𝑦 = 0 

2. Solve (𝑎ଶ − 2𝑥𝑦 − 𝑦ଶ)𝑑𝑥 + (𝑥 + 𝑦)ଶ𝑑𝑦 = 0 

3. Solve 𝑠𝑒𝑐ଶ𝑥𝑡𝑎𝑛𝑦𝑑𝑥 + 𝑠𝑒𝑐ଶ𝑡𝑎𝑛𝑥𝑑𝑦 = 0 
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Program II:  Solution of differential equations that are solvable for x. 

Maxima code to find the solution of the differential equation 𝒙 = 𝒚 + 𝒑. 

kill(all)$ 

x:y+p$ 

x(y):=y+p(y)$ 

d:diff(x(y),y)$ 

eq:1/p-d$ 

q:solve(eq,'diff(p(y),y,1))$ 

print(q)$ 

sol1:integrate(1,y)=-integrate((p/(p-1)),p)+c$ 

print("The parametric solution of the given problem is x=",x,"and",sol1)$ 

 

Output:  

൤
d

dy
p(y) = −

p − 1

p
൨ 

The parametric solution of the given problem is x = y + p and 𝑦 = −𝑝 − log(𝑝 − 1) + 𝑐  

 

Example:  

1. Solve y = 2px + yଶpଷ 

2. Solve y − 2px + ypଶ = 0  

3. Solve yଶlogy = xpy + pଶ 
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Program III: Solution of differential equations that are solvable for y.  

Maxima code to find the solution of the differential equation 𝒚 = 𝒔𝒊𝒏𝒑 − 𝒑𝒄𝒐𝒔𝒑 

kill(all)$ 

y:sin(p)−p·cos(p)$ 

y(x):=sin(p(x))−p(x)*cos(p(x))$ 

d:diff(y(x),x)$ 

q:p(x)−d$ 

solve(q,'diff(p(x),x,1))$ 

sol:integrate(1,x)=integrate(sin(p),p)+c$ 

print("The parametric solution y=",y,"and",sol)$ 

 

Output:  

 The parametric solution y = sinp − pcosp and 𝑥 = 𝑐 − cos(𝑝) 

 

Examples: 

1. Solve y = 2px + pସxଶ 

2. Solve y = −px + xସpଶ 

3. Solve y = 2px − pଶ 
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Program IV: Solution of differential equations that are solvable for p.  

Maxima code to find the solution of the differential equation 𝒙𝟐𝒑𝟐 + 𝒙𝒚𝒑 − 𝟔𝒚𝟐 = 𝟎 

kill(all)$ 

equ:x^2·p^2+x·y·p−6·y^2$ 

solve(equ,p)$ 

r:subst(p='diff(y,x),%)$ 

r1:r[1]$ 

ode2(r1,y,x)$ 

sol1:(lhs(%)−rhs(%))$ 

r2:r[2]$ 

ode2(r2,y,x)$ 

sol2:(lhs(%)−rhs(%))$ 

print("The complete solution is:",sol1·sol2=0)$ 

 

Output:  

The complete solution is: ቀ𝑦 −
%௖

௫య
ቁ (𝑦 − %𝑐𝑥ଶ) = 0 

 

Examples: 

1. Solve 𝑝ଶ + 𝑝 = 6  

2. Solve 𝑝ଶ − 5𝑝 − 6 = 0  

3. Solve 𝑝ଶ − 7𝑝 + 12 = 0  
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Program V: To find the singular solution by using Clairaut’s form.  

Maxima code to find the solution of the differential equation 𝒚 = 𝒑𝒙 −
𝒂

𝒑
.  

kill(all)$ 

A:y−p·x−a/p$ 

B:subst(p=c,A=0)$ 

print("The general solution is",B)$ 

C:diff(A,p)$ 

D:solve(C,p)$ 

a:2$ 

print("The singular solution is")$ 

for i:1 thru length(D) do( 

E[i]:subst(p=rhs(D[i]),A=0), 

disp(radcan(E[i]))); 

 

Output:  

The general solution is 𝑦 − 𝑐𝑥 −
௔

௖
= 0  

The singular solution is  

𝑦 + 2√𝑎√𝑥 = 0  

𝑦 − 2√𝑎√𝑥 = 0  

 

Examples: 

1. Find the general solution of p = log(𝑦 − 𝑝𝑥) 

2. Find the general solution of sinpxcosy − cospxsiny = p 

3. Find the general solution of(𝑥ଶ − 1)𝑝ଶ − 2𝑥𝑦𝑝 + 𝑦ଶ − 1 = 0 
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Program VI: Examining the Convergence of the Sequence. 

Maxima code to check the convergence of xn=ቀ𝟏 +
𝟏

𝒏
ቁ

𝒏

.   

kill(all)$ 

xn:(1+1/n)^n; 

lim:limit(xn,n,inf); 

if abs(lim)=inf then 

print("sequence is divergent") 

elseif abs(lim)#inf and abs(lim)#ind then 

print("sequence is convergent") 

else 

print("Sequence is oscillatory")$ 

 

Output: 

൬𝟏 +
𝟏

𝒏
൰

𝒏

 

%𝒆 

Sequence is convergent 

 

Examples:  

1. 
ଶ୬ାଷ

ଷ୬ାସ
 

2. 1 −
ଵ

௡
 

3. 
ଷ୬ାସ

ଶ୬ାଵ
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Program VII :Verification of Exponential Series.  

Maxima code to verify the exponential series :∑ ቀ
𝒏𝟑

𝒏!
ቁஶ

𝒏ୀ𝟏  

kill(all)$ 

load("simplify_sum")$ 

u(n):=n^3/factorial(n)$ 

S:sum(u(n),n,1,inf)$ 

print("The given series is:", S)$ 

s1:simplify_sum(S)$ 

print("Sum of the series",s1)$ 

  

Output: 

The given series is:∑ ቀ
𝒏𝟑

𝒏!
ቁஶ

𝒏ୀ𝟏  

Sum of the series is 5%𝑒 

 

Examples: 

1. ∑
ଶ೙షభ

(௡ାଵ)!

ஶ
௡ୀଵ  

2. ∑
௡మ

௡!

ஶ
௡ୀଵ  

3. ∑
௡(௡ାଵ)

ଶ௡!

ஶ
௡ୀଵ  
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Program VIII: Verification of Logarithmic Series. 

Maxima code to verify the logarithmic series ∑ (ି𝟏)𝒏శ𝟏𝒙𝒏

𝒏

ஶ
𝒏ୀ𝟏  

kill(all)$ 

u(n):=((−1)^(n+1)·(x)^n/n)$ 

s:sum(u(n),n,1,inf); 

load("simplify_sum")$ 

sum:simplify_sum(s)$ 

print("Sum of the series",sum)$   

 

Output:  

෍
(−1)௡ାଵ𝑥௡

𝑛

ஶ

௡ୀଵ

 

Sum of the series is:log (𝑥 + 1) 

 

Examples:  

1. ∑
୶౤

୬

ஶ
୬ୀଵ  

2. ∑
(ିଵ)౤శభ

୬

ஶ
୬ୀଵ  

3. ∑
ଵ

୬
−

ଶ

ଶ୬ାଵ 

ஶ
୬ୀଵ  
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Program IX: De’Alembert’s Ratio Test  

Maxima code to check the convergence of the series  ∑
𝟏

𝒏𝟐
ஶ
𝒏ୀ𝟏 . 

kill(all)$ 

u(n):=1/n^2; 

D:limit(u(n+1)/u(n),n,inf); 

if D<1 then 

disp("By ratio test the given series is convergent") 

else 

if D>1 then 

disp("By ratio test the given series is divergent") 

else 

disp("Ratio test fails")$ 

 

Output: 

𝑢(𝑛) ≔  
1

𝑛ଶ
 

1 

Ratio test fails 

Examples:  

1. ∑
௡!

௡

ஶ
௡ୀଵ  

2. ∑
௡మ

ଷ೙
ஶ
௡ୀଵ  

3. ∑ ට
௡ାଵ

௡ାଶ

ஶ
௡ୀଵ  
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Program  X: Cauchy’s Root Test :  

Maxima code to check the convergence of the series  ∑
𝒏𝟐

(𝒏ା𝟏)𝒏𝟐𝒏
ஶ
𝒏ୀ𝟏  

kill(all)$ 

u(n):=(n/(2·(n+1)))^n$ 

s:sum(u(n),n,1,inf); 

disp("The given series is:",s)$ 

C:limit((u(n))^(1/n),n,inf); 

if C<1 then 

disp("By cauchy's root test series is convergent") 

else 

if C>1 then 

disp("By cauchy's root test series is divergent") 

else 

disp("Cauchy's test fails")$ 

 

Output:  

The given series is:   

෍
𝒏𝟐

(𝒏 + 𝟏)𝒏𝟐𝒏

ஶ

𝒏ୀ𝟏

 

1

2
 

By cauchy's root test series is convergent 

Example: 

1. ∑ (1 +
ଵ

௡
)௡మஶ

௡ୀଵ  
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2. ∑ ൤ቀ
௡ାଵ

௡
ቁ − ቀ

௡ାଵ

௡
ቁ

௡ାଵ

൨
௡

ஶ
௡ୀଵ  

3. ∑
௡೙శభ

(௡ାଵ)೙
ஶ
௡ୀଵ  
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Program  XI: Convergence of the Alternating Series Using Leibnitz’s Theorem.  

Maxima code to check the convergence of the series  ∑
(ି𝟏)𝒏ష𝟏

√𝒏ି𝟏 

ஶ
𝒏ୀ𝟏  

kill(all)$ 

u(n):=1/sqrt(n−1)$ 

s:sum(((−1)^(n−1))·u(n),n,1,inf)$ 

print("The given series is:",s)$ 

L:limit(u(n),n,inf); 

if L=0 and u(101)<u(100)then 

print("By Leibnitz's test series is convergent") 

else 

print("By Leibnitz's test series is not convergent")$ 

 

Output:  

The given series is: ∑
(ି𝟏)𝒏ష𝟏

√𝒏ି𝟏 

ஶ
𝒏ୀ𝟏  

0  

By Leibnitz's test series is convergent 

 

Example: 

1. ∑ (−1)𝒏ା𝟏 ୬

𝟐𝒏ି𝟏 

ஶ
𝒏ୀ𝟏  

2. ∑ (−1)𝒏 ଵ

𝒏

ஶ
𝒏ୀ𝟏  

3. ∑ (−1)𝒏ା𝟏 ଵ

𝒏!

ஶ
𝒏ୀ𝟏  
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Program XII: Verification of Cauchy’s Integral Test.  

Maxima code to check the convergence of the series  𝑼𝒏 = ∑
𝟏

𝒏𝟐ା𝟏

ஶ
𝒏ୀ𝟏   by using cauchy’s 

integral test . 

kill(all)$ 

print("Cauchy's integral test")$ 

U(n):=1/(n^2+1)$ 

ss:sum(U(n),n,1,inf)$ 

print("U(n)=",ss)$ 

f(x):=1/(x^2+1)$ 

d(x):=ratsimp(f(x)-f(x+1))$ 

print("f(x)-(x+1):",d(x))$ 

if d(1)>0 then  

( 

print("The sequence f(x) is monotonically decreasing"), 

print("Cauchy's integral test ids applicable"), 

s:integrate(f(x),x,1,inf), 

ifs#inf then  

    (  

print("f(x) is convergent"), 

print("Hence by Cauchy's integral test U(n) is convergent") 

    ) 

else 

print("U(n) is divergent") 

) 
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else 

print("Cauchy's integral test cannot br applied")$ 

 

Output:  

Cauchy's integral test 

Un = ෍
1

nଶ + 1

ஶ

୬ୀଵ

 

f(x) − f(x + 1):
2𝑥 + 1

𝑥ସ + 2𝑥ଷ + 3𝑥ଶ + 2𝑥 + 2 
 

The sequence f(x) is monotonically decreasing 

Cauchy's integral test ids applicable 

f(x) is convergent 

Hence by Cauchy's integral test U(n) is convergent 

 

Examples: 

1. ∑ ቂ
௟௢௚௡

୪୭୥ (௡ାଵ)
ቃ

௡మ௟௢௚௡ 
ஶ
௡ୀଵ  

2. ∑ ቀ
௡ାଵ

௡ାଶ
ቁ

௡

𝑥௡  𝑤ℎ𝑒𝑟𝑒 (𝑥 > 0)ஶ
௡ୀଵ  
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Program I : Solution for Linear Partial Differential equation of type I to type IV. 

Solve pq=1 

/*Type I- PDE Equations of the form f(p,q)=0 */ 

kill(all)$ 

print("The given equation is")$ 

eqn:(p*q=1)$ 

disp(eqn)$ 

z:a*x+b*y+c$ 

print("Substitute p=a and q=b in given equation")$ 

h:subst([p=a,q=b],eqn)$ 

print("We get",h)$ 

disp("solving for a and b")$ 

solve(h,a); 

h1:subst(%,z)$ 

disp("The required solution is:",h1)$ 

Output: 

The given equation is 

pq = 1 

Substitute p=a  and q=b in given equation 

We get  ab = 1 

solving for a and b 

[𝑎 =
ଵ

௕
 ] 

The required solution is : 

𝑏𝑦 +
𝑥

𝑏
+ 𝑐 

Examples: 

1. 122  qp    

2. 1 qp     

3. qep      
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Solve p(1+q)=qz 

/*TypeII-PDE Equations of the form f(p,q,z)=0 */ 

kill(all)$ 

print("The given equation is")$ 

eqn:p*(1+q)=q*z$ 

disp(eqn)$ 

disp("substitute p=dz/du and q=a.dz/du")$ 

eqn1:subst([p='diff(z,u),q=a*'diff(z,u)],eqn)$ 

disp(eqn1)$ 

disp("solving for dz/du and substitute u=ax+y")$ 

h1:solve(eqn1,'diff(z,u))$ 

disp(h1)$ 

ode2(h1[1],z,u)$ 

h2:subst(u=x+a*y,%)$ 

disp("solution is:",h2)$ 

Output: 

The given equation is 

𝑝 (𝑞 + 1) =  𝑞𝑧 

substitute p=dz/du and q=a.dz/du 
ௗ

ௗ௨
𝑧 ቀ𝑎 ቀ

ௗ

ௗ௨
𝑧ቁ + 1ቁ = 𝑎 𝑧 ቀ

ௗ

ௗ௨
𝑧ቁ 

Solving for dz/du and substitute 𝑢 = 𝑎𝑥 + 𝑦  

[
ௗ

ௗ௭
𝑧 =  

௔௭ିଵ

௔
,

ௗ

ௗ௭
𝑧 = 0 ] 

solution is : 

z = (
%௘షೌ೤షೣ

௔
+ %𝑐) %𝑒௔௬ା௫ 

Examples: 

1. )1()1( 2 zqqp     

2. zpq       

3. pqzqp 333      
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Solve p+x=q+y 

/*TypeIII-PDE Equations of the form f1(p,x) =f2(q,y) */ 

kill(all)$ 

print("The given PDE is")$ 

eqn:p+x=q+y$ 

disp(eqn)$ 

d:(p+q*'diff(y,x))$ 

r1:lhs(eqn)=k$ 

disp(r1)$ 

r2:rhs(eqn)=k$ 

disp(r2)$ 

print("solving for p from LHS")$ 

h1:solve(r1,p)$ 

disp(h1)$ 

print("solving for q from RHS")$ 

h2:solve(r2,q)$ 

disp(h2)$ 

print("substituting p and q in dz=pdx+qdy and integrate")$ 

subst(h1,d)$ 

A:subst(h2,%)$ 

ode2((A),y,x)$ 

z: rhs(%)-lhs(%)$ 

disp("the solutionis z=",z)$ 
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Output: 

The given PDE is 

𝑥 + 𝑝 = 𝑦 + 𝑞 

𝑥 + 𝑝 = 𝐾 

𝑦 + 𝑞 = 𝑘 

solving for p from LHS  

[𝑝 = 𝐾 − 𝑥] 

solving for q fromRHS 

[𝑞 = 𝑘 − 𝑦] 

substituting p and q in d=pdx+qdy and integrate  

the solution is z= 

𝑦ଶ − 2𝑘𝑦

2
+

𝑥ଶ − 2𝐾𝑥

2
+ %𝑐 

Examples:  

1. yqxp  22   

2. yxqp      

3. xy qepe       
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Solve 
qp

pq
qypxz


  

/*TypeIV-PDE Equations of the form z=px+qy+f(p,q) Clariaut’s equation*/ 

kill(all)$ 

print("The given PDE is")$ 

eqn:z=p*x+q*y+sqrt((p*q)/(p+q))$ 

disp(eqn)$ 

disp("substitute p=a & q=b in given equation")$ 

soln:subst([p=a,q=b],eqn)$ 

disp("solution is s:", soln)$ 

Output: 

The given PDE is 

𝑧 = 𝑞𝑦 + 𝑝𝑥 + ඨ
𝑝𝑞

𝑞 + 𝑝
 

substitute p=a and q=b in given equation  

solution is s: 

𝑧 = 𝑏𝑦 + 𝑎𝑥 + ඨ
𝑎𝑏

𝑏 + 𝑎
 

Examples: 

1. )log( pqqypxz   

2. )( pqqypxz       

3. 22 qpqypxz      
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Program II : Solution of second order homogenous partial differential equation with 

constant coefficient. 

Solve 0)(23 2||2  DDDD  

/* second order linear PDE with constant co−efficients */ 

kill(all)$ 

F(D,D1)*z=0$ 

disp("The given PDE is")$ 

F(D,D1):=D^2+3*D*(D1)+2*(D1)^2=0$ 

disp(F(D,D1))$ 

print("substitute D=m & D1=1")$ 

ae:F(m,1)$ 

print("Auxilary equation is",ae)$  

k:allroots(ae)$ 

print("roots are",k)$ 

k1:rhs(k[1])$ 

k2:rhs(k[2])$ 

a1:f(y+k1*x)+g(y+k2*x)$ 

a2:f(y+k1*x)+x*g(y+k2*x)$ 

if k1#k2 then 

disp("solution is",z=a1) 

elsedisp("solution is ",z=a2)$ 

Output: 

The given PDE is: 

2𝐷1ଶ + 3𝐷𝐷1 + 𝐷ଶ = 0 
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substitute D=m  & D1=1  

auxilary equation is 𝑚ଶ + 3𝑚 + 2 = 0 

roots are [m = -1.0 , m = -2.0] 

solution is  

𝑧 = 𝑓(𝑦 − 1.0𝑥) + 𝑔(𝑦 − 2.0𝑥) 

Examples: 

1. 𝐷ଶ − 𝐷𝐷ᇱ − 6𝐷ᇱଶ
= 0 

2. 𝐷ଶ + 6𝐷ଶ𝐷ᇱ + 9𝐷ᇱଶ
= 0 

 

Solve )2(2||2 )(2 yxeDDDD   

kill(all)$ 

ratprint:false$ 

F(D,D1)*z=f(x,y)$ 

disp("The given PDE is")$ 

F(D,D1):=D^2−D*D1−2*D1^2$ 

disp(F(D,D1))$ 

print("substitute D=m & D1=1")$ 

ae:F(m,1)$ 

print("Auxilary equation is",ae)$  

h:allroots(ae=0)$ 

print("roots are",h)$ 

h1:rhs(h[1])$ 

h2:rhs(h[2])$ 

cf1:f1(y+h1*x)+g1(y+h2*x)$ 

cf2:f1(y+h1*x)+x*g1(y+h2*x)$ 

if h1#h2 then 

(CF:cf1) 
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else 

(CF:cf2)$ 

print("Complimentary function is CF=",CF)$ 

/*For particular integral*/ 

f(x,y):=%e^(x+2*y)$ 

print("RHS=",f(x,y))$ 

I1:integrate(f(x,c−h1*x),x)$ 

f3(x,y):=ratsimp(subst([c=y+h1*x],I1))$ 

integrate(f3(x,c−h2*x),x)$ 

PI:ratsimp(subst([c=y+h2*x],%))$ 

print("Particular Integral is",PI)$ 

z:CF+PI$ 

print("Solution is",z)$ 

Output: 

The given PDE is 

−2𝐷1ଶ − 𝐷𝐷1 + 𝐷ଶ = 0 

substitute D=m and D1=1  

auxiliary equation is 𝑚ଶ − 𝑚 − 2 = 0 

roots are [m = -1.0 ,m = 2.0]  

complimentary function is CF=g1(y+2.0x)+f1(y-1.0x) 

RHS = %𝑒ଶ௬ା௫ 

Particular integral is - 
%௘మ೤శೣ

ଽ
 

Solution is   g1(y+2.0x)+f1(y-1.0x)−
%௘మ೤శೣ

ଽ
 

 

Example: 

 

1. 𝐷ଶ − 𝐷𝐷ᇱ + 6𝐷ᇱଶ
= 𝑒(௫ା௬) 

2. 𝐷ଶ − 𝐷𝐷ᇱ + 6𝐷ᇱଶ
= 𝑒(௫ି௬) 
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Program  III: Laplace Transforms of some common functions: 

1. L[a]=
௔

௦
   2. L[𝑒௔௧]= 

ଵ

௦ି௔
 3. L[𝑒ି௔௧]= 

ଵ

௦ା௔
 4.L[coshat]=

௦

௦మି௔మ
        5. L[sinhat]= 

௔

௦మି௔మ
 

6. L[cosat]=
௦

௦మା௔మ
  7.L[sinat]= 

௔

௦మା௔మ
 8.L[tn]= 

௡!

௦೙శభ
  ,n∈N 9. L[tn]=

௰(௡ାଵ)

௦೙శభ
 ,n is non integer 

10. L[ f(n)(t)]= snL[f(t)]-sn-1 f(0)-sn-2 f '(0)- _ _ _ -f(n-1)(0)  11. L[tnf(t)]=(-1)n ௗ೙

ௗ௦೙

 F(s) 

Evaluate Laplace transform of  atetf )(  

/*Laplace Transform of e^(at) */ 

kill(all)$ 

disp("The given function is")$ 

f:%e^(a*t)$ 

print("f(t)=",f)$ 

L:laplace(f,t,s)$ 

disp("Laplace transform of given function is ")$ 

print("L[f(t)]=",L)$ 

Output: 

The given function is 

𝑓(𝑡) = %𝑒௔௧ 

Laplace transform of given function is 

𝐿[𝑓(𝑡)] =
1

𝑠 − 𝑎
 

 

 

 

Evaluate Laplace transform of  attf 2sin)(   
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kill(all)$ 

disp("The given function is")$ 

f:(sin(a*t))^2$ 

print("f(t)=",f)$ 

L:laplace(f,t,s)$ 

disp("Laplace transform of given function is ")$ 

print("L[f(t)]=",L)$ 

Output: 

The given function is 

𝑓(𝑡) = sin(𝑎𝑡)ଶ 

Laplace transform of given function is  

𝐿[𝑓(𝑡)] =
2𝑎ଶ

𝑠ଷ + 4𝑎ଶ𝑠
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Program  IV: Laplace Transforms of periodic functions: 

Find the laplace transform of f(t)=t2, 0<t<2 & f(t+2)=f(t)    

kill(all)$ 

disp("The given function is")$ 

f:t^2$ 

print("f(t)=",f)$ 

print("Enter the period")$ 

t1:2$ 

print("T=",t1)$ 

a:1/(1−%e^(−t1*s))$ 

I:integrate(%e^(−s*t)*f,t,0,2)$ 

L:(a*I)$ 

print("Laplace transform of given periodic function",L)$ 

Output:  

The given function is  

𝑓(𝑡) = 𝑡ଶ 

Enter the period  

T = 2 

Laplace transform of given periodic function 
మ

ೞయି
(రೞమశరೞశమ)%೐షమೞ

ೞయ

ଵି%௘షమೞ
 

Example: 

1. f(t) = 𝑒ି௧   , 0<t<1  

2. f(t) = 𝑒௧   , 0<t<2 
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Find Laplace transform of periodic function 








426

203
)(

t

tt
tf  

kill(all)$ 

disp("The given function is")$ 

f1:3*t$ 

f2:6$ 

disp(f1,f2)$ 

print("Enter the period")$ 

t1:4$ 

print("T=",t1)$ 

a:1/(1−%e^(−t1*s))$ 

I1:integrate(%e^(−s*t)*f1,t,0,2)$ 

I2:integrate(%e^(−s*t)*f2,t,2,4)$ 

I:I1+I2$ 

L:ratsimp(a*I)$ 

print("Laplace transform of given periodic functionis",L)$ 

Output:  

The given function is  

3t 

6 

Enter the period  

Laplace transform of given periodic function is
ଷ%௘రೞିଷ%௘మೞି଺௦

௦మ%௘రೞି௦మ
 

Example: 

1. 𝑓(𝑡) = ൝
𝐸,    0 ≤ 𝑡 ≤

்

ଶ

−𝐸,    
்

ଶ
≤ 𝑡 ≤ 𝑇

 with 𝑓(𝑡 + 𝑇) = 𝑓(𝑡) 

2. 𝑓(𝑡) = ൝
1,    0 ≤ 𝑡 ≤

௔

ଶ

−1,    
௔

ଶ
≤ 𝑡 ≤ 𝑎

 with 𝑓(𝑡 + 𝑎) = 𝑓(𝑡) 
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Program V : Inverse Laplace transform: 

1. L-1 [
ଵ

௦
]= 1     2. L-1[

௔

௦
]= a      3. L-1[

ଵ

௦ି௔
] =  𝑒௔௧  4. L-1[

ଵ

௦ା௔
] = 𝑒ି௔௧ 

5. L-1[
ଵ

௦మି௔మ
] =

ଵ

௔
sinhat    6. L-1[

௦

௦మି௔మ
]=coshat      7. L-1[

ଵ

௦మା௔మ
] =  

ଵ

௔
 sinat 8. L-1[

௦

௦మା௔మ
] =cosat 

9. L-1[
ଵ

௦೙శభ
]=

௧೙

௡!
  ,n=0,1,_ _ _  10. L-1[

ଵ

௦೙శభ
]= 

௧೙

௰(௡ାଵ)
 ,n=0,1,_ _ _   or non integer < 0 

Evaluate inverse laplace transform of 








2

11

s
L  

/*Inverse Laplace Transform*/ 

kill(all)$ 

disp("The given function is")$ 

f:1/(s−2)$ 

print("f(s)=",f)$ 

L:ilt(f,s,t)$ 

disp("Inverse laplace transform of given function is ")$ 

print("[f(t)=",L)$ 

Output:  

The given function is  

𝑓(𝑠) =
1

𝑠 − 2
 

 Inverse laplace transform of given function is  

[𝑓(𝑡)] = %𝑒ଶ௧ 
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Evaluate inverse laplace transform of 











)2)(1(

11

sss
L   

kill(all)$ 

disp("The given function is")$ 

f:1/(s*(s−1)*(s−2))$ 

print("f(s)=",f)$ 

L:ilt(f,s,t)$ 

disp("Inverse laplace transform of given function is ")$ 

print("[f(t)=",L)$ 

Output:  

The given function is  

𝑓(𝑠) =
1

(𝑠 − 2)(𝑠 − 1)𝑠
 

Inverse laplace transform of given function is  

[𝑓(𝑡) =]
%𝑒ଶ௧

2
− %𝑒௧ +

1

2
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Program VI: Verificaton of convolution theorem 

Verify convolution theorem for the functions ttgetf t cos)(&)(   

/*Convolution theorem*/ 

kill(all)$ 

assume(t>0)$ 

print("Given functions are")$ 

f(t):=%e^t$ 

g(t):=cos(t)$ 

print("f(t)=",f(t))$ 

print("g(t)=",g(t))$ 

L1:laplace(f(t),t,s)$ 

print("L[f(t)]=",L1)$ 

L2:laplace(g(t),t,s)$ 

print("L[g(t)]=",L2)$ 

I1:integrate(f(t-u)*g(u),u,0,t)$ 

LHS:ratsimp(laplace(I1,t,s))$ 

print("LHS=",LHS)$ 

RHS:ratsimp(L1*L2)$ 

print("RHS=",RHS)$ 

if LHS=RHS then 

print("Convolution theorem satisfied") 

else 

print("Convolution theorem is not satisfied")$ 
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Output:  

Given functions are 

𝑓(𝑡) = %𝑒௧ 

𝑔(𝑡) = cos(𝑡) 

𝐿[𝑓(𝑡)] =
1

𝑠 − 1
 

𝐿[𝑓(𝑡)] =
𝑠

𝑠ଶ + 1
 

LHS = 
௦

௦యି௦మା௦ିଵ
 

RHS = 
௦

௦యି௦మା௦ିଵ
 

Convolution theorem satisfied 

Examples: 

1. f(t) = 1 and g(t) = sin(t). 

2. f(t) = cos(t) and g(t) = sin(t). 
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Program VII: Solution for linear differential equation using laplace transform. 

Solve xey
dx

dy 55   using laplace transform at y(0)=1. 

/·Solution for linear ODE using Laplace transform·/ 

kill(all)$ 

eq:'diff(y(x),x)+5·y(x)−%e^(−5·x)$ 

print("The given differential equation is",eq)$ 

laplace(%,x,s); 

linsolve(%,laplace(y(x),x,s)); 

soln:subst(1,y(0),%)$ 

L:partfrac(rhs(soln[1]),s)$ 

print("Laplace transform of given eqaution is L[y(x)]=",L)$ 

y:ilt(%,s,x)$ 

print("Required solution is y(x)=",y)$ 

Output:  

The given differential equation is
ௗ

ௗ௫
𝑦(𝑥) + 5 𝑦(𝑥) − %𝑒ିହ௫ 

slaplace(y(x), x, s)+5 laplace (y(x), x, s)-
ଵ

௦ାହ
 –y(0)  

[laplace(𝑦(𝑥) , 𝑥, 𝑠) =
𝑦(0) 𝑠 + 5 𝑦(0) + 1

𝑠ଶ + 10𝑠 + 25
] 

laplace transform of given equation is L[y(x)] = 
ଵ

௦ାହ
+

ଵ

(௦ାହ)మ
 

Required solution is y(x) = 𝑥%𝑒ିହ௫ + %𝑒ିହ௫ 

Examples: 

1. 𝑦ᇱ − 5𝑦 = 0   given that  𝑦(0) = 2. 

2. 𝑦ᇱ − 5𝑦 = 𝑒ହ௫given that  𝑦(0) = 2. 
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Solve 2)0(&0)0(09 1
2

2

 yywithy
dx

yd
 using laplace transform at y(0)=1. 

kill(all)$ 

eq:'diff(y(x),x,2)+9·y(x)=0$ 

print("The given differential equation is",eq)$ 

laplace(%,x,s); 

linsolve(%,laplace(y(x),x,s)); 

soln:subst(0,y(0),%)$ 

soln1:subst(2,'at('diff(y(x),x),x=0),%)$ 

L:partfrac(rhs(soln1[1]),s)$ 

print("Laplace transform of given eqaution is L[y(x)]=",L)$ 

y:ilt(%,s,x)$ 

print("Required solution is y(x)=",y)$ 

Output:  

The given differential equation is
ௗమ

ௗ௫మ
𝑦(𝑥) + 9 𝑦(𝑥) = 0  

−
ௗ

ௗ௫
𝑦(𝑥)|௫ୀ଴ + 𝑠ଶlaplace( y(x), x, s)+9 laplace( y(x), x, s)-y(0)=0 

[laplace( y(x), x, s)=
೏

೏ೣ
௬(௫)|ೣసబା௬(଴)௦

௦మାଽ
] 

laplace transform of given equation is L[y(x)] = 
ଶ

௦మାଽ
 

Required solution is y(x) = 
ଶ ୱ୧୬(ଷ௫)

ଷ
 

 

Examples: 

1. 9𝑦ᇱᇱ − 6𝑦ᇱ + 𝑦 = 0 given𝑦(0) = 3  and  𝑦′(0) = 1 
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Program VIII: Solution for Integral equation using laplace transform. 

Find Laplace Transform of  
t

dt
t

btat

0

)cos(cos
 

kill(all)$ 

f:(cos(a*t)-cos(b*t))/t$ 

disp("Given integral equation is")$ 

f1:'integrate(f,t,0,t)$ 

print("f(t)=",f1)$ 

L:laplace(f,t,s)$ 

Lt:ratsimp((1/s)*L)$ 

disp("Laplace transform of given function is ")$ 

print("L[f(t)]=",Lt)$ 

Output:  

Given integral equation is 

𝑓(𝑡) = න
𝑐𝑜𝑠𝑎𝑡 − 𝑐𝑜𝑠𝑏𝑡

𝑡

௧

଴

 𝑑𝑡 

Laplace transform of given function is  

𝐿[𝑓(𝑡)] =
log(𝑠ଶ + 𝑏ଶ) − log(𝑠ଶ + 𝑎ଶ)

2𝑠
 

Examples: 

1. 𝑓(𝑡) = ∫
௖௢௦଺௧ି௖௢௦ସ௧

௧

௧

଴
 𝑑𝑡 

2. 𝑓(𝑡) =  ∫ 𝑠𝑖𝑛𝑡𝑑𝑡
௧

଴
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Program IX : Evaluation of Fourier series for simple functions. 

Evaluate fourier series for f(x)= x2 in [-𝝅, 𝝅] 

/·Fourier Series ·/ 

kill(all)$ 

load(fourie)$ 

print("The given function is")$ 

f(x):=x^2$ 

print("f(x)=",f(x))$ 

c:totalfourier(f(x),x,%pi)$ 

print("required fourier series is",c)$ 

OR 

/·Fourier Series ·/ 

kill(all)$ 

load(fourie)$ 

print("The given function is")$ 

f(x):=x^2$ 

print("f(x)=",f(x))$ 

fourier(f(x),x,%pi)$ 

clist:foursimp(%)$ 

soln:fourexpand(clist,x,%pi,inf)$ 

print("Required fourier series is",soln)$ 
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Output: 

The given function is 

       𝑓(𝑥) = 𝑥ଶ 

𝑎଴ =
𝜋ଶ

3
 

𝑎௡ =
2 ቀ

గమୱ୧୬ (గ௡)

௡
−  

ଶ ୱ୧ (గ௡)

௡య
+

ଶ ஠ୡ୭ୱ(గ௡)

௡మ
ቁ

𝜋
 

       𝑏௡ = 0 

𝑎଴ =
𝜋ଶ

3
 

      𝑎௡ =
4(−1)௡

𝑛ଶ
 

𝑏௡ = 0 

Required fourier series is 4 ቀ∑ ቀ
(ିଵ)೙ ୡ୭ୱ(௡௫)

௡మ
ቁஶ

௡ୀଵ ቁ +
గమ

ଷ
 

 

Evaluate fourier series for f(x)= x+x2 in [-𝟏, 𝟏] 

kill(all)$ 

load(fourie)$ 

print("The given function is")$ 

f(x):=x+x^2$ 

print("f(x)=",f(x))$ 

c:totalfourier(f(x),x,1)$ 

print("required fourier series is",c)$ 

OR 
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kill(all)$ 

load(fourie)$ 

print("The given function is")$ 

f(x):=x+x^2$ 

print("f(x)=",f(x))$ 

fourier(f(x),x,1)$ 

clist:foursimp(%)$ 

soln:fourexpand(clist,x,1,inf)$ 

print("required fourier series is",soln)$ 

/·to plot the gaph·/ 

soln2:fourexpand(clist,x,1,100)$ 

wxplot2d([f(x),soln2], [x,−10,10])$ 

Output: 

The given function is 

𝑓(𝑥) = 𝑥ଶ+x 

       𝑎଴ =
1

3
 

       𝑎௡ =  
ଶ ୱ୧୬(గ௡)

௡గ
−  

ସ ୱ୧୬(గ௡)

గయ௡య
 +

ସ ୡ୭ୱ(గ௡)

గమ௡మ
 

       𝑏௡ =
2 sin(𝜋𝑛)

𝜋ଶ𝑛ଶ
−

2 cos(𝜋𝑛)

𝜋𝑛
 

       𝑎଴ =
1

3
 

       𝑎௡ =
4(−1)௡

𝜋ଶ𝑛ଶ
 

       𝑏௡ =
2(−1)௡

𝜋𝑛
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Required fourier series is 
ଶ ∑ ൬

(షభ)೙ ౩౟౤(೙ೣ)

೙
൰ಮ

೙సభ

గ
+

ସ൬∑ ൬
(షభ)೙ ౙ౥౩(ഏ೙ೣ)

೙మ ൰ಮ
೙సభ ൰

గమ
+

ଵ

ଷ
 

 

 

Program  X: Evaluation half range sine and cosine series. 

 Evaluate half range fourier sine series for f(x)= x2 in [0, 𝜋] 

/·Half range sine series·/ 

kill(all)$ 

load(fourie)$ 

print("The given function is")$ 

f(x):=x^2$ 

print("f(x)=",f(x))$ 

foursin(f(x),x,%pi)$ 

clist:foursimp(%)$  

soln:fourexpand(clist,x,%pi,inf)$ 

print("The half range sine series is",soln)$ 

Output: 

The given function is 

𝑓(𝑥) = 𝑥ଶ 

      𝑏௡ =
2 ቀ

గୱ୧୬ (గ௡)

௡మ
−  

గమ ୡ୭ୱ(గ௡)

௡
+

ଶ ୡ୭ୱ(గ௡)

௡య
−

ଶ

௡య
ቁ

𝜋
 

      𝑏௡ =  −
2(𝜋ଶ𝑛ଶ(−1)௡ − 2(−1)௡ + 2

𝜋𝑛ଷ
 

The half range sine series is  -
ଶ ∑ ൬

ഏమ೙మ(షభ)೙షమ(షభ)೙ శమ౩౟౤(೙ೣ)

೙
൰ಮ

೙సభ

గ
 

Examples:  
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1. 𝑓(𝑥) = 2𝑥 − 1  in  [0, 𝜋] 

2. 𝑓(𝑥) = 𝑥  in  [0, 𝜋] 

 

Evaluate half range fourier cosine series for f(x)= x2 in [0, 𝝅] 

/·Half range cosine series·/ 

kill(all)$ 

load(fourie)$ 

print("The given function is")$ 

f(x):=x^2$ 

print("f(x)=",f(x))$ 

fourcos(f(x),x,%pi)$ 

clist:foursimp(%)$ 

soln:fourexpand(clist,x,%pi,inf)$ 

print("The half range cosine series is",soln)$ 

Output: 

The given function is 

𝑓(𝑥) = 𝑥ଶ 

       𝑎଴ =
𝜋ଶ

3
 

   𝑎௡ =
2 ቀ

గమୱ୧୬ (గ௡)

௡
−  

ଶ ୱ୧୬(గ௡)

௡య
+

ଶ ஠ୡ୭ୱ(గ௡)

௡మ
ቁ

𝜋
 

      𝑎଴ =
𝜋ଶ

3
 

      𝑎௡ =
4(−1)௡

𝑛ଶ
 

The half range cosine series is is4 ቀ∑ ቀ
(ିଵ)೙ ୡ୭ୱ(௡௫)

௡మ
ቁஶ

௡ୀଵ ቁ +
గమ

ଷ
 



25 B.L.D.E.A’s S.B Arts and K.C.P. Science College, Vijayapura. 
 
 

 

    Examples: 

1. 𝑓(𝑥) = 2𝑥 − 1  in  [0, 𝜋] 

2. 𝑓(𝑥) = 𝑥  in  [0, 𝜋] 

ProgramXI:  Evaluation of Fourier cosine transform 

Evaluate Fourier cosine transform of  f(x)=x in [0,π] 

/*Fourier cosine transform*/ 

kill(all)$ 

print("The given function is")$ 

f(x):=x$ 

print("f(x)=",f(x))$ 

a:0$ 

p:%pi$ 

s:integrate(f(x)*cos((n*x*%pi)/p),x,0,p)$ 

fs:ratsimp(s)$ 

print("Fourier Cosine Transform of given function is",fs)$ 

Output: 

The given function is 

f(x) = x  

Fourier Cosine Transform of given function is  
గ௡ ୱ୧୬(గ௡)ାୡ୭ୱ(గ௡)ିଵ

௡మ
 

Examples: 

1. 𝑓(𝑥) = 𝑥ଶ in [0, 𝜋] 

2. 𝑓(𝑥) = 𝜋 − 𝑥  in [0, 𝜋] 
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ProgramXII:  Evaluation of Fourier sine transform 

Evaluate Fourier sine transform of f(x)=3x in [0,6] 

/*Fourier sine transform*/ 

kill(all)$ 

print("The given function is")$ 

f(x):=3*x$ 

print("f(x)=",f(x))$ 

a:0$ 

p:6$ 

s:integrate(f(x)*sin((n*x*%pi)/p),x,0,p)$ 

fs:ratsimp(s)$ 

print("Fourier Sine Transform of given function is",fs)$ 

Output:  

The given function is 

f(x) = 3x  

Fourier Sine Transform of given function is
ଵ଴଼ ୱ୧୬(గ௡)ିଵ଴଼గ௡ ୡ୭ (గ௡)

గమ௡మ
 

Examples: 

1. 𝑓(𝑥) = 𝑥ଶ in [0, 4] 

2. 𝑓(𝑥) = 𝜋 − 𝑥  in [0, 𝜋] 
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For Fifth Semester DSC Mathematics 
(Practical on Real Analysis-II and Complex Analysis) 

(4 Hours per Week and 56 hours per Semester) 

Elements of Partial differential equations and Integral transforms using FOSS. 

1. Program on verification of Cauchy – Riemann Equations (Cartesian Form) or 

test for Analyticity. 

2. Program on verification of Cauchy – Riemann Equations (Polar Form) or test 

for Analyticity. 

3. Program to check whether a function is harmonic or not. 

4. Program to construct analytic functions (Milne-Thomson Method). 

5. Program to find cross-ratio of points and related concepts. 

6. Program to find fixed points of bilinear transformations. 

7. Program to verify De-Moivre’s theorem. 

8. Program to check whether a given set of real numbers attains supremum or 

infimum. 

9. Program to find upper and the lower Riemann sums with respect to a given 

partition. 

10. Program to test Riemann integrability. 

11. Program to evaluate Riemann integral as a limit of sum. 
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Experiment 1 

Program on verification of 
Cauchy – Riemann Equations (Cartesian Form) or test for Analyticity. 

Aim: To verify of Cauchy – Riemann Equations (Cartesian Form) or to test Analyticity of 

given function using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys: 

Key Function 

%i 
 

 

Complex imaginary unit √−1 
realpart (expr) Returns the real part of expr. 
imagpart (expr) Returns the imaginary part of the expression expr. 

 
abs (z) 

The abs function represents the mathematical absolute 
value function and works for both numerical and 
symbolic values. 

cabs (expr) 
Calculates the absolute value of an expression 
representing a complex number. 

conjugate (z) Returns the complex conjugate of z. 
atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi. 

diff (expr, x) 
Returns the first partial derivative of expr with respect to 
the variable x. 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 
radicals. 

And The logical conjunction operator. 

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise 
the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

exp (x) or %e^x Represents the exponential function 
log (x) Represents the natural (base e) logarithm of x. 
sin (x) Trigonometric function sine of x 
sinh (x) Hyperbolic function Hyperbolic Sine of x 
%pi; 𝜋, an irrational number 

 
Note:1. Press Shift+Enter for evaluation of commands and display of output. 

2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

3. Replace dollar ($) by semicolon (;) to see output of any input line. 

4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

of all symbols 
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Definitions and Formulae: 

Analytic function: A function (𝑧) of a complex variable 𝑧 = 𝑥 + 𝑖𝑦 is said to be analytic at a point 

𝑧0 if it is differentiable at 𝑧0 and at each point of some neighborhood of 𝑧0. (𝑧) is analytic in 

a region ‘R’ if it is analytic at all points of ‘R’. An analytic function is also called a 

holomorphic function or a regular function. A function which is analytic on the whole 

complex plane (i.e., for all 𝑧 ∈ 𝐶) is called an entire function. 

Cauchy – Riemann (C-R) Equations in cartesian form: C-R equations give the necessary condition 

for a function (𝑧) to be analytic at a point 𝑧0. In cartesian form, if (𝑧) = 𝑢 + 𝑖𝑣 (where, 

𝑢 = (𝑥, 𝑦) and 𝑣 = 𝑣(𝑥, 𝑦) are real valued functions of real variables 𝑥 and 𝑦 and 𝑧 = 𝑥 + 

𝑖𝑦) is analytic at 𝑧0 then 

𝑢𝑥 = 𝑣𝑦 𝑎𝑛𝑑 𝑢𝑦 = −𝑣𝑥 

hold at 𝑧0. These are called C-R equations. If C-R equations are not satisfied by (𝑧) at a 

point, then it can’t be analytic at that point. 

 
Further, if 𝑢𝑥, 𝑢𝑦, 𝑣𝑥 𝑎𝑛𝑑 𝑣𝑦 are continuous and satisfy C-R equations at a point then the 

function is analytic at that point. 

Program: 

Program to verify Cauchy – Riemann Equations in cartesian form 

z:x+%i*y$ 
f(z):=given function of z$ 
u:realpart(f(z))$ 
v:imagpart(f(z))$ 
u_x:diff(u,x)$ 
u_y:diff(u,y)$ 
v_x:diff(v,x)$ 
v_y:diff(v,y)$ 
print("f(z)=",f(z))$ 
print("u=",u)$ 
print("v=",v)$ 
print("u_x=",u_x)$ 
print("v_y=",v_y)$ 
print("u_y=",u_y)$ 
print("-v_x=",-v_x)$ 
if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then 
print("C-R Equations are satisfied by f(z) and hence f(z) is analytic") 
else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
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Worked Examples: 

Problem 1. Write a program to test whether (𝑧) = 𝑧 + 𝑒𝑧 is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

z:x+%i*y$ 

f(z):=z+exp(z)$ 

u:realpart(f(z))$ 

v:imagpart(f(z))$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

print("f(z)=",f(z))$ 

print("u=",u)$ 

print("v=",v)$ 

print("u_x=",u_x)$ 

print("v_y=",v_y)$ 

print("u_y=",u_y)$ 

print("-v_x=",-v_x)$ 

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then 

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 
 

𝑓(𝑧) = %𝑒%𝑖𝑦+𝑥 + %𝑖𝑦 + 𝑥 

𝑢 = %𝑒𝑥 cos(𝑦) + 𝑥 

𝑣 = %𝑒𝑥 sin(𝑦) + 𝑦 

𝑢_𝑥 = %𝑒𝑥 cos(𝑦) + 1 

𝑣_𝑦 = %𝑒𝑥 cos(𝑦) + 1 

𝑢_𝑦 = −%𝑒𝑥 sin(𝑦) 

−𝑣_𝑥 = −%𝑒𝑥 sin(𝑦) 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Problem 2. Write a program to test whether (𝑧) = 𝑠𝑖𝑛 𝑧 is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

z:x+%i*y$ 

f(z):=sin(z)$ 

u:realpart(f(z))$ 

v:imagpart(f(z))$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

print("f(z)=",f(z))$ 

print("u=",u)$ 

print("v=",v)$ 

print("u_x=",u_x)$ 

print("v_y=",v_y)$ 

print("u_y=",u_y)$ 

print("-v_x=",-v_x)$ 

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then 

print("C-R Equations are satisfied by f(z) and hence is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 
 

(𝑧) = sin(%𝑖𝑦 + 𝑥) 

𝑢 = sin(𝑥) cosh(𝑦) 

𝑣 = cos(𝑥) sinh(𝑦) 

𝑢_𝑥 = cos(𝑥) cosh(𝑦) 

𝑣_𝑦 = cos(𝑥) cosh(𝑦) 

𝑢_𝑦 = sin(𝑥) sinh(𝑦) 

−𝑣_𝑥 = sin(𝑥) sinh(𝑦) 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Problem 3. Write a program to test whether (𝑧) = 𝑙𝑜𝑔 𝑧 is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

z:x+%i*y$ 

f(z):=log(z)$ 

u:realpart(f(z))$ 

v:imagpart(f(z))$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

print("f(z)=",f(z))$ 

print("u=",u)$ 

print("v=",v)$ 

print("u_x=",u_x)$ 

print("v_y=",v_y)$ 

print("u_y=",u_y)$ 

print("-v_x=",-v_x)$ 

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then 

print("C-R Equations are satisfied by f(z) and hence is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 

 
(𝑧) = log(%𝑖𝑦 + 𝑥) 

log(𝑦2 + 𝑥2) 
𝑢 = 

2
 

𝑣 = atan2(𝑦, 𝑥) 

𝑥 
𝑢_𝑥 = 

𝑦2 + 𝑥2 

𝑥 
𝑣_𝑦 = 

𝑦2 + 𝑥2 

𝑦 
𝑢_𝑦 = 

𝑦2 + 𝑥2 

𝑦 
−𝑣_𝑥 = 

𝑦2 + 𝑥2 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Problem 4. Write a program to test whether (𝑧) = 𝑧𝑒𝑧 is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

z:x+%i*y$ 

f(z):=z*exp(z)$ 

u:realpart(f(z))$ 

v:imagpart(f(z))$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

print("f(z)=",f(z))$ 

print("u=",u)$ 

print("v=",v)$ 

print("u_x=",u_x)$ 

print("v_y=",v_y)$ 

print("u_y=",u_y)$ 

print("-v_x=",-v_x)$ 

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then 

print("C-R Equations are satisfied by f(z) and hence is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 
 

𝑓(𝑧) = (%𝑖𝑦 + 𝑥)%𝑒%𝑖𝑦+𝑥 

𝑢 = 𝑥%𝑒𝑥 cos(𝑦) − %𝑒𝑥𝑦 sin(𝑦) 

𝑣 = 𝑥%𝑒𝑥 sin(𝑦) + %𝑒𝑥𝑦 cos(𝑦) 

𝑢_𝑥 = −%𝑒𝑥𝑦 sin(𝑦) + 𝑥%𝑒𝑥 cos(𝑦) + %𝑒𝑥 cos(𝑦) 

𝑣_𝑦 = −%𝑒𝑥𝑦 sin(𝑦) + 𝑥%𝑒𝑥 cos(𝑦) + %𝑒𝑥 cos(𝑦) 

𝑢_𝑦 = −𝑥%𝑒𝑥 sin(𝑦) − %𝑒𝑥 sin(𝑦) − %𝑒𝑥𝑦 cos(𝑦) 

−𝑣_𝑥 = −𝑥%𝑒𝑥 sin(𝑦) − %𝑒𝑥 sin(𝑦) − %𝑒𝑥𝑦 cos(𝑦) 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Problem 5. Write a program to test whether (𝑧) = z ̅is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦 and z̅ is the conjugate 

of 𝑧 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
z:x+%i*y$ 

f(z):=conjugate(z)$ 

u:realpart(f(z))$ 

v:imagpart(f(z))$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

print("f(z)=",f(z))$ 

print("u=",u)$ 

print("v=",v)$ 

print("u_x=",u_x)$ 

print("v_y=",v_y)$ 

print("u_y=",u_y)$ 

print("-v_x=",-v_x)$ 

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then 

print("C-R Equations are satisfied by f(z) and hence is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 
 

𝑓(𝑧) = 𝑥 − %𝑖𝑦 

𝑢 = 𝑥 

𝑣 = −𝑦 

𝑢_𝑥 = 1 

𝑣_𝑦 = −1 

𝑢_𝑦 = 0 

−𝑣_𝑥 = 0 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Problem 6. Write a program to test whether (𝑧) = 𝑧 ∙ 𝐼𝑚(𝑧) is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦 

and 𝐼𝑚(𝑧) = Imaginary part of 𝑧 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

z:x+%i*y$ 

f(z):=z*imagpart(z)$ 

u:realpart(f(z))$ 

v:imagpart(f(z))$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

print("f(z)=",f(z))$ 

print("u=",u)$ 

print("v=",v)$ 

print("u_x=",u_x)$ 

print("v_y=",v_y)$ 

print("u_y=",u_y)$ 

print("-v_x=",-v_x)$ 

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then 

print("C-R Equations are satisfied by f(z) and hence is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 
 

𝑓(𝑧) = 𝑦(%𝑖𝑦 + 𝑥) 

𝑢 = 𝑥𝑦 

𝑣 = 𝑦2 

𝑢_𝑥 = 𝑦 

𝑣_𝑦 = 2𝑦 

𝑢_𝑦 = 𝑥 

−𝑣_𝑥 = 0 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Problem 7. Write a program to test whether (𝑧) = 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) + %𝑖 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) is analytic or not, 

where 𝑧 = 𝑥 + 𝑖𝑦 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
f(x,y):=cos(x)*sin(y)+%i*sin(x)*cos(y)$ 

u:realpart(f(x,y))$ 

v:imagpart(f(x,y))$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

print("f(z)=",f(x,y))$ 

print("u=",u)$ 

print("v=",v)$ 

print("u_x=",u_x)$ 

print("v_y=",v_y)$ 

print("u_y=",u_y)$ 

print("-v_x=",-v_x)$ 

if radcan(u_x)=radcan(v_y) and radcan(u_y)=radcan(-v_x) then 

print("C-R Equations are satisfied by f(z) and hence is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 
 

(𝑧) = cos(𝑥) sin(𝑦) + %𝑖 sin(𝑥) cos(𝑦) 

𝑢 = cos(𝑥) sin(𝑦) 

𝑣 = sin(𝑥) cos(𝑦) 

𝑢_𝑥 = − sin(𝑥) sin(𝑦) 

𝑣_𝑦 = − sin(𝑥) sin(𝑦) 

𝑢_𝑦 = cos(𝑥) cos(𝑦) 

−𝑣_𝑥 = − cos(𝑥) cos(𝑦) 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Exercise: 

Write a program to test whether the given function (𝑧) is analytic or not, where 𝑧 = 𝑥 + 𝑖𝑦: 
 
 

1. (𝑧) = 𝑐𝑜𝑠(𝑧) (Answer: Analytic) 

2. (𝑧) = 𝑐𝑜𝑠ℎ(𝑧) (Answer: Analytic) 

3. (𝑧) = 𝑠𝑖𝑛ℎ(𝑧) (Answer: Analytic) 

4. 𝑓(𝑧) = 𝑧2 (Answer: Analytic) 

5. 𝑓(𝑧) = 𝑧𝑧 (Answer: Analytic) 

6. 𝑓(𝑧) = 𝑧𝑧̅ (Answer: Not Analytic) 

7. (𝑧) = 
1

 

𝑧 

8. (𝑧) = 
1

 

𝑧 ̅

(Answer: Analytic) 

(Answer: Not Analytic) 

9. 𝑓(𝑧) = 𝑧3 (Answer: Analytic) 

10. 𝑓(𝑧) = 𝑅𝑒(𝑧) where Re(z)= real part of z (Answer: Not Analytic) 

11. (𝑧) = 3𝑥 − 4𝑦 + 𝑖(4𝑥 + 3𝑦) (Answer: Analytic) 

12. (𝑧) = 𝑖𝑧 + 4 (Answer: Analytic) 

13. (𝑧) = |𝑧| where |𝑧| = modulus of z (Answer: Not Analytic) 

[ Hint: Define 𝑓(𝑧) = |𝑧| as f(z):=cabs(z) in Maxima] 
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Experiment 2 

Program on verification of 
Cauchy – Riemann Equations (Polar Form) or test for Analyticity. 

Aim: To verify Cauchy – Riemann Equations (Polar Form) or to test Analyticity of a given 

function using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys: 

Key Function 

%i 
 

 

Complex imaginary unit √−1 
assume(r>0) To declare that r is positive 
realpart (expr) Returns the real part of expr. 
imagpart (expr) Returns the imaginary part of the expression expr. 
conjugate (z) Returns the complex conjugate of z. 

 
abs (z) 

The abs function represents the mathematical absolute 
value function and works for both numerical and 
symbolic values. 

cabs (expr) 
Calculates the absolute value of an expression 
representing a complex number. 

atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi. 

diff (expr, x) 
Returns the first partial derivative of expr with respect to 
the variable x. 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 
radicals. 

and The logical conjunction operator. 

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise 
the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

exp (x) or %e^x Represents the exponential function 
log (x) Represents the natural (base e) logarithm of x. 
sin (x) Trigonometric function sine of x 
sinh (x) Hyperbolic function Hyperbolic Sine of x 
%pi; 𝜋, an irrational number 

 
Note:1. Press Shift+Enter for evaluation of commands and display of output. 

2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 
3. Replace dollar ($) by semicolon (;) to see output of any input line. 
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

of all symbols 
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Definitions and Formulae: 

Analytic function: A function (𝑧) of a complex variable 𝑧 = 𝑟𝑒𝑖𝜃 = 𝑟(𝑐𝑜𝑠(𝜃) + 𝑖𝑠𝑖𝑛(𝜃)) is said to be 

analytic at a point 𝑧0 if it is differentiable at 𝑧0 and at each point of some neighborhood of 

𝑧0. (𝑧) is analytic in a region ‘R’ if it is analytic at all points of ‘R’. An analytic function is 

also called a holomorphic function or a regular function. A function which is analytic on the 

whole complex plane (i.e., for all 𝑧 ∈ 𝐶) is called an entire function. 

Cauchy – Riemann (C-R) Equations in polar form: C-R equations give the necessary condition for a 

function (𝑧) to be analytic at a point 𝑧0. In polar form, if (𝑧) = 𝑢 + 𝑖𝑣 (where 𝑢 = 𝑢(𝑟, 𝜃) 

and 𝑣 = 𝑣(𝑟, 𝜃) are real valued functions of real variables 𝑟 and 𝜃 and 𝑧 = 𝑟𝑒𝑖𝜃 ) is analytic 

at 𝑧0 then 

𝑟 ∙ 𝑢𝑟 = 𝑣𝜃 𝑎𝑛𝑑 𝑟 ∙ 𝑣𝑟  = −𝑢𝜃 

hold at 𝑧0. These are called C-R equations. If C-R equations are not satisfied by (𝑧) at a 

point, then it can’t be analytic at that point. 

 
Further, if 𝑢𝑟, 𝑢𝜃, 𝑣𝑟 𝑎𝑛𝑑 𝑣𝜃 are continuous and satisfy C-R equations at a point then the 

function is analytic at that point. 

Program: 

Program to verify Cauchy – Riemann Equations in polar form 

assume(r>0)$ 
z:r*exp(%i*θ)$ 
f(z):=given function of z$ 
u:realpart(f(z))$ 
v:imagpart(f(z))$ 
u_r:diff(u,r)$ 
u_θ:diff(u,θ)$ 
v_r:diff(v,r)$ 
v_θ:diff(v,θ)$ 
print("f(z)=",f(z))$ 
print("u=",radcan(u))$ 
print("v=",radcan(v))$ 
print("ru_r=",radcan(r*u_r))$ 
print("v_θ=",radcan(v_θ))$ 
print("rv_r=",radcan(r*v_r))$ 
print("-u_θ=",radcan(-u_θ))$ 
if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then 
print("C-R Equations are satisfied by f(z) and hence f(z) is analytic") 
else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
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Worked Examples: 

Problem 1. Write a program to test whether (𝑧) = 𝑧𝑛 is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

assume(r>0)$ 

z:r*exp(%i*θ)$ 

f(z):=z^n$ 

u:realpart(f(z))$ 

v:imagpart(f(z))$ 

u_r:diff(u,r)$ 

u_θ:diff(u,θ)$ 

v_r:diff(v,r)$ 

v_θ:diff(v,θ)$ 

print("f(z)=",f(z))$ 

print("u=",radcan(u))$ 

print("v=",radcan(v))$ 

print("ru_r=",radcan(r*u_r))$ 

print("v_θ=",radcan(v_θ))$ 

print("rv_r=",radcan(r*v_r))$ 

print("-u_θ=",radcan(-u_θ))$ 

if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then 

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 
 

𝑓(𝑧) = 𝑟𝑛%𝑒%𝑖𝑛𝜃 

𝑢 = 𝑟𝑛 cos(𝑛𝜃) 

𝑣 = 𝑟𝑛 sin(𝑛𝜃) 

𝑟𝑢_𝑟 = 𝑛𝑟𝑛 cos(𝑛𝜃) 

𝑣_𝜃 = 𝑛𝑟𝑛 cos(𝑛𝜃) 

𝑟𝑣_𝑟 = 𝑛𝑟𝑛 sin(𝑛𝜃) 

−𝑢_𝜃 = 𝑛𝑟𝑛 sin(𝑛𝜃) 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Problem 2. Write a program to test whether (𝑧) = 𝑧 + 
1 

is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃 

𝑧 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 

assume(r>0)$ 

z:r*exp(%i*θ)$ 

f(z):=z+1/z$ 

u:radcan(realpart(f(z)))$ 

v:radcan(imagpart(f(z)))$ 

u_r:diff(u,r)$ 

u_θ:diff(u,θ)$ 

v_r:diff(v,r)$ 

v_θ:diff(v,θ)$ 

print("f(z)=",f(z))$ 

print("u=",u)$ 

print("v=",v)$ 

print("ru_r=",radcan(r*u_r))$ 

print("v_θ=",radcan(v_θ))$ 

print("rv_r=",radcan(r*v_r))$ 

print("-u_θ=",radcan(-u_θ))$ 

if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then 

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 

𝑓(𝑧) = 𝑟%𝑒%𝑖𝜃 + 
%𝑒−%𝑖𝜃

 

𝑟 

𝑢 = 

 
𝑣 = 

(𝑟2 + 1) cos(𝜃) 
 

 

𝑟 
(𝑟2 − 1) sin(𝜃) 

 
 

𝑟 
(𝑟2 − 1) cos(𝜃) 

𝑟𝑢_𝑟 = 
𝑟 

𝑣_𝜃 = 
(𝑟2 − 1) cos(𝜃) 

 
 

𝑟 
(𝑟2 + 1) sin(𝜃) 

𝑟𝑣_𝑟 = 

 
−𝑢_𝜃 = 

𝑟 
(𝑟2 + 1) sin(𝜃) 

 
 

𝑟 
𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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Problem 3. Write a program to test whether (𝑧) = 
1 

is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃 

𝑧 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
assume(r>0)$ 

z:r*exp(%i*θ)$ 

f(z):=1/z$ 

u:realpart(f(z))$ 

v:imagpart(f(z))$ 

u_r:diff(u,r)$ 

u_θ:diff(u,θ)$ 

v_r:diff(v,r)$ 

v_θ:diff(v,θ)$ 

print("f(z)=",f(z))$ 

print("u=",u)$ 

print("v=",v)$ 

print("ru_r=",radcan(r*u_r))$ 

print("v_θ=",radcan(v_θ))$ 

print("rv_r=",radcan(r*v_r))$ 

print("-u_θ=",radcan(-u_θ))$ 

if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then 

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 
 

%𝑒−%𝑖𝜃 

𝑓(𝑧) = 
𝑟

 

cos(𝜃) 
𝑢 =  

 

𝑟 
sin(𝜃) 

𝑣 = − 
𝑟

 

cos(𝜃) 
𝑟𝑢_𝑟 = − 

𝑟 

𝑣_𝜃 = − 
cos(𝜃) 

 
 

𝑟 

𝑟𝑣_𝑟 = 
sin(𝜃) 

 
 

𝑟 
sin(𝜃) 

−𝑢_𝜃 = 
𝑟

 

𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 
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𝜃 

Problem 4. Write a program to test whether (𝑧) = √𝑟𝑒
𝑖(

2
) is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

assume(r>0)$ 

f(r,θ):=r^(1/2)*exp(%i*θ/2)$ 

u:realpart(f(r,θ))$ 

v:imagpart(f(r,θ))$ 

u_r:diff(u,r)$ 

u_θ:diff(u,θ)$ 

v_r:diff(v,r)$ 

v_θ:diff(v,θ)$ 

print("f(z)=",f(r,θ))$ 

print("u=",u)$ 

print("v=",v)$ 

print("ru_r=",radcan(r*u_r))$ 

print("v_θ=",radcan(v_θ))$ 

print("rv_r=",radcan(r*v_r))$ 

print("-u_θ=",radcan(-u_θ))$ 

if radcan(r*u_r)=radcan(v_θ) and radcan(r*v_r)=radcan(-u_θ) then 

print("C-R Equations are satisfied by f(z) and hence f(z) is analytic") 

else print("C-R Equations are not satisfied by f(z) and hence f(z) is not analytic")$ 
 

%𝑖𝜃 
 

(𝑧) = √𝑟%𝑒 2 

𝜃 
 

𝑢 = √𝑟 cos ( ) 
2 

𝜃 
𝑣 = √𝑟 sin ( ) 

2 
𝜃 

 √𝑟 cos ( ) 
 

𝑟𝑢_𝑟 = 2   
2 

𝜃 
 

𝑣_𝜃 = 
√𝑟 cos (2) 

2 
𝜃

 

𝑟𝑣_𝑟 = 
√𝑟 sin (2) 

2 𝜃 

−𝑢_𝜃 = 
√𝑟 sin (2) 

2 
𝐶 − 𝑅 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓(𝑧) 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 



Page 20 of 57  

Exercise: 

Write a program to test whether the given function (𝑧) is analytic or not, where 𝑧 = 𝑟𝑒𝑖𝜃: 
 
 

1. 𝑓(𝑧) = 𝑧2 (Answer: Analytic) 

2. 𝑓(𝑧) = 𝑧3 (Answer: Analytic) 

3. (𝑧) = 𝑠𝑖𝑛ℎ(𝑧) (Answer: Analytic) 

4. 𝑓(𝑧) = 𝑧2 (Answer: Analytic) 

5. (𝑧) = 𝑟2(𝑐𝑜𝑠(2𝜃) + 𝑖 𝑠𝑖𝑛(2𝜃)) (Answer: Analytic) 
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Experiment 3 

Program to check whether a function is harmonic or not. 

Aim: To check whether a given function is harmonic or not using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys: 
 

Key Function 

%i 
 

 

Complex imaginary unit √−1 
assume(r>0) To declare that r is positive 
realpart (expr) Returns the real part of expr. 
imagpart (expr) Returns the imaginary part of the expression expr. 
conjugate (z) Returns the complex conjugate of z. 

 
abs (z) 

The abs function represents the mathematical absolute 
value function and works for both numerical and 
symbolic values. 

cabs (expr) 
Calculates the absolute value of an expression 
representing a complex number. 

atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi. 

diff (expr, x) 
Returns the first partial derivative of expr with respect to 
the variable x. 

diff (expr, x, n) 
Returns the nth partial derivative of expr with respect to 
the variable x. 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 
radicals. 

and The logical conjunction operator. 

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise 
the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

exp (x) or %e^x Represents the exponential function 
log (x) Represents the natural (base e) logarithm of x. 
sin (x) Trigonometric function sine of x 
sinh (x) Hyperbolic function Hyperbolic Sine of x 
%pi; 𝜋, an irrational number 

 
Note:1. Press Shift+Enter for evaluation of commands and display of output. 

2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 
3. Replace dollar ($) by semicolon (;) to see output of any input line. 
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

of all symbols 
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Definitions and Formulae: 

Harmonic function: A function 𝜙 is said to be harmonic if it satisfies Laplace’s Equation ❑2𝜙 = 0. 

If 𝜙 is a function of 𝑥 and 𝑦 (Cartesian form) then 𝜙 is harmonic if 𝜙𝑥𝑥 + 𝜙𝑦𝑦 = 0. i.e., 

𝜕2𝜙 𝜕2𝜙 

𝜕2𝑥2 + 
𝜕2𝑦2 = 0. 

If 𝜙 is a function of 𝑟 and 𝜃 then 𝜙 is harmonic if 1 1 𝜙 = 0. i.e., 
𝜙𝑟𝑟 + 

𝑟 
𝜙𝑟 + 

𝑟2 

𝜕2𝜙 1 𝜕𝜙 1 𝜕2𝜙 

𝜃𝜃 

𝜕2𝑟2 
+ 

𝑟 𝜕𝑟 
+ 

𝑟2 𝜕2𝜃2 
= 0. 

Harmonic property of analytic function: The real and imaginary parts of an analytic function are 

harmonic. 

Harmonic Conjugates: Two harmonic functions 𝑢 and 𝑣 are said to be harmonic conjugates if 𝑢 + 𝑖𝑣 

is analytic. Here 𝑣 is called the harmonic conjugate of 𝑢 and vice-versa. 

Program: 

Program to check whether a function in 𝑥 and 𝑦 (Cartesian Function) is harmonic or not. 

u:given function of 𝑥 and 𝑦$ 
u_xx:diff(u,x,2)$ 
u_yy:diff(u,y,2)$ 
print("u=",u)$ 
print("u_xx=",radcan(u_xx))$ 
print("u_yy=",radcan(u_yy))$ 
print("u_xx+u_yy=",radcan(u_xx+u_yy))$ 
if radcan(u_xx+u_yy)=0 then 
print("Given function is harmonic") 
else print("Given function is not harmonic")$ 

Program to check whether a function in 𝑟 and 𝜃 (Polar Function) is harmonic or not. 

u:given function of 𝑟 and 𝜃 $ 
u_r:diff(u,r)$ 
u_rr:diff(u,r,2)$ 
u_θθ:diff(u,θ,2)$ 
print("u=",u)$ 
print("u_r=",radcan(u_r))$ 
print("u_rr=",radcan(u_rr))$ 
print("u_θθ=",radcan(u_θθ))$ 
print("u_rr+(u_r)/r+(u_θθ)/r^2=",radcan(u_rr+(u_r)/r+(u_θθ)/r^2))$ 
if radcan(u_rr+(u_r)/r+(u_θθ)/r^2)=0 then 
print("Given function is harmonic") 
else print("Given function is not harmonic")$ 
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Worked Examples: 

Problem 1. Write a program to check whether 𝑢 = 𝑥2 − 𝑦2 is harmonic or not. 

Program: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

u:x^2-y^2$ 

u_xx:diff(u,x,2)$ 

u_yy:diff(u,y,2)$ 

print("u =",u)$ 

print("u_xx =",radcan(u_xx))$ 

print("u_yy =",radcan(u_yy))$ 

print("u_xx+u_yy =",radcan(u_xx+u_yy))$ 

if radcan(u_xx+u_yy) =0 then 

print("Given function is harmonic") 

else print("Given function is not harmonic")$ 
 
 

𝑢 = 𝑥2 − 𝑦2 

𝑢_𝑥𝑥 = 2 

𝑢_𝑦𝑦 = −2 

𝑢_𝑥𝑥 + 𝑢_𝑦𝑦 =0 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 
 
 

Problem 2. Write a program to check whether 𝑢 = 𝑥3 − 3𝑥𝑦2 + 3𝑥2 − 3𝑦2 + 1 is harmonic or not. 

Program: 

u:x^3-3*x*y^2+3*x^2-3*y^2+1$ 

u_xx:diff(u,x,2)$ 

u_yy:diff(u,y,2)$ 

print("u =",u)$ 

print("u_xx =",radcan(u_xx))$ 

print("u_yy =",radcan(u_yy))$ 

print("u_xx+u_yy =",radcan(u_xx+u_yy))$ 

if radcan(u_xx+u_yy)=0 then 

print("Given function is harmonic") 

else print("Given function is not harmonic")$ 
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Output:  

𝑢 = −3𝑥𝑦2 − 3𝑦2 + 𝑥3 + 3𝑥2 + 1 

𝑢_𝑥𝑥 = 6𝑥 + 6 

𝑢_𝑦𝑦 = −6𝑥 − 6 

𝑢_𝑥𝑥 + 𝑢_𝑦𝑦 = 0 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 
 

 

Problem 3. Write a program to check whether 𝑢 = log√x + y is harmonic or not. 

Program: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

u:log((x+y)^(1/2))$ 

u_xx:diff(u,x,2)$ 

u_yy:diff(u,y,2)$ 

print("u =",u)$ 

print("u_xx =",radcan(u_xx))$ 

print("u_yy =",radcan(u_yy))$ 

print("u_xx+u_yy =",radcan(u_xx+u_yy))$ 

if radcan(u_xx+u_yy)=0 then 

print("Given function is harmonic") 

else print("Given function is not harmonic")$ 
 
 

𝑢 = 
log(𝑦 + 𝑥) 

2 
1 

𝑢_𝑥𝑥 = −    
2𝑦2 + 4𝑥𝑦 + 2𝑥2 

𝑢_𝑦𝑦 = − 
1

 
2𝑦2 + 4𝑥𝑦 + 2𝑥2 

1 
𝑢_𝑥𝑥 + 𝑢_𝑦𝑦 = − 

𝑦2 + 2𝑥𝑦 + 𝑥2 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 

Problem 4. Write a program to check whether 𝑢 = (𝑟 + 

Program: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 
) cos(𝜃) is harmonic or not. 

𝑟 

u:(r+1/r)*cos(θ)$ 

u_r:diff(u,r)$ 

u_rr:diff(u,r,2)$ 
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Output: 

u_θθ:diff(u,θ,2)$ 

print("u =",u)$ 

print("u_r =",radcan(u_r))$ 

print("u_rr =",radcan(u_rr))$ 

print("u_θθ =",radcan(u_θθ))$ 

print("u_rr+(u_r)/r+(u_θθ)/r^2 =",radcan(u_rr+(u_r)/r+(u_θθ)/r^2))$ 

if radcan(u_rr+(u_r)/r+(u_θθ)/r^2) =0 then 

print("Given function is harmonic") 

else print("Given function is not harmonic")$ 
 

1 
𝑢 = (𝑟 + ) 𝑐𝑜𝑠(𝜃) 

𝑟 

(𝑟2 − 1) cos(𝜃) 
𝑢_𝑟 = 

 
𝑢_𝑟𝑟 = 

𝑟2 

2 cos(𝜃) 

𝑟3 

(𝑟2 + 1) cos(𝜃) 
𝑢_𝜃𝜃 = − 

𝑟 

𝑢_𝑟𝑟 + 
𝑢_𝑟 

+ 
𝑢_𝜃𝜃 

=0 
𝑟 𝑟2 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 

Problem 5. Write a program to check whether 𝑣 = − 
sin(𝜃) 

is harmonic or not. 
𝑟 

Program:  

v:-sin(θ)/r$ 

v_r:diff(v,r)$ 

v_rr:diff(v,r,2)$ 

v_θθ:diff(v,θ,2)$ 

print("v =",v)$ 

print("v_r =",radcan(v_r))$ 

print("v_rr =",radcan(v_rr))$ 

print("v_θθ =",radcan(v_θθ))$ 

print("v_rr+(v_r)/r+(v_θθ)/r^2 =",radcan(v_rr+(v_r)/r+(v_θθ)/r^2))$ 

if radcan(v_rr+(v_r)/r+(v_θθ)/r^2) =0 then 

print("Given function is harmonic") 

else print("Given function is not harmonic")$ 
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Output: 
 
 

𝑣 = − 

 
𝑣_𝑟 = 

 
 
sin(𝜃) 

 
 

𝑟 

sin(𝜃) 

𝑟2 

2 sin(𝜃) 
𝑣_𝑟𝑟 = − 

𝑟3
 

sin(𝜃) 
𝑣_𝜃𝜃 = 

𝑟 

𝑣_𝑟𝑟 + 
𝑣_𝑟 

+ 
𝑣_𝜃𝜃 

=0 
𝑟 𝑟2 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 
 
 
 
 

Exercise: 

Write a program to check whether the given functions are harmonic or not: 
 

1. 𝑢 = 𝑙𝑜𝑔√𝑥2 + 𝑦2 (Answer: Harmonic) 

2. 𝑣 = cos(𝑥) sinh(𝑦) (Answer: Harmonic) 

3. 𝑢 = 𝑥2 + 4𝑥 − 𝑦2 + 2𝑦 (Answer: Harmonic) 

4. 𝑢 = 𝑒(𝑥 𝑐𝑜𝑠(𝑦) − 𝑦 𝑠𝑖𝑛(𝑦)) (Answer: Harmonic) 

5. 𝑢 = 3𝑥2 + 2𝑥𝑦 − 2𝑦2 (Answer: Not Harmonic) 

6. 𝑣 = −𝑟3 sin(3𝜃) (Answer: Harmonic) 

7. 𝑢 = 𝑟2 cos(3𝜃) (Answer: Not Harmonic) 

8. 𝑢 =  
cos(𝜃) 

𝑟 
(Answer: Harmonic) 
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Experiment 4 

Program to construct analytic functions (Milne-Thomson Method). 

Aim: To construct analytic function from its real/imaginary part by applying Milne-Thomson Method 

using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys: 

Key Function 

%i 
 

 

Complex imaginary unit √−1 
assume(r>0) To declare that r is positive 
realpart (expr) Returns the real part of expr. 
imagpart (expr) Returns the imaginary part of the expression expr. 
conjugate (z) Returns the complex conjugate of z. 

 
abs (z) 

The abs function represents the mathematical absolute 
value function and works for both numerical and 
symbolic values. 

cabs (expr) 
Calculates the absolute value of an expression 
representing a complex number. 

atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi. 

diff (expr, x) 
Returns the first partial derivative of expr with respect to 
the variable x. 

subst (a, b, c) Substitutes a for b in c 

subst ([eq_1, ..., eq_k], expr) 
For each equation, the right side will be substituted for 
the left in the expression expr. 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 
radicals. 

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise 
the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

exp (x) or %e^x Represents the exponential function 
log (x) Represents the natural (base e) logarithm of x. 
sin (x) Trigonometric function sine of x 
sinh (x) Hyperbolic function Hyperbolic Sine of x 
%pi; 𝜋, an irrational number 

 
Note:1. Press Shift+Enter for evaluation of commands and display of output. 

2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 
3. Replace dollar ($) by semicolon (;) to see output of any input line. 
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

of all symbols 



Page 28 of 57  

Definitions and Formulae: 

Milne-Thomson Method of constructing analytic function from its real or imaginary part: 

Cartesian function: 

Step 1. If the real part u is given then find 𝑓′(𝑧) = 𝑢𝑥 − 𝑖𝑢𝑦. If the imaginary part v is given then find 

𝑓′(𝑧) = 𝑣𝑦 + 𝑖𝑣𝑥. 

Step 2. Substitute 𝑥 = 𝑧, 𝑦 = 0 in 𝑓′(𝑧) to express it in 𝑧. 

Step 3. Integrate 𝑓′(𝑧) with respect to 𝑧 to get 𝑓(𝑧). 
 
 

Polar function: 

Step 1. If the real part u is given then find 𝑓′(𝑧) = 𝑒−𝑖𝜃 (𝑢𝑟 

then find 𝑓′(𝑧) = 𝑒−𝑖𝜃 (
𝑣𝜃 + 𝑖𝑣 ). 
𝑟 𝑟 

Step 2. Substitute 𝑟 = 𝑧, 𝜃 = 0 in 𝑓′(𝑧) to express it in 𝑧. 

Step 3. Integrate 𝑓′(𝑧) with respect to 𝑧 to get 𝑓(𝑧). 

 
 

— 𝑖 
𝑢𝜃). If the imaginary part v is given 
𝑟 

 

 

Program: 

Program to construct analytic function when real part is given in 𝑥 and 𝑦 (Cartesian Function). 

u:given function of 𝑥 and 𝑦$ 
u_x:diff(u,x)$ 
u_y:diff(u,y)$ 
f:radcan(subst([x=z, y=0], u_x-%i*u_y))$ 
F:radcan(integrate(f,z))$ 
print("u=",u)$ 
print("f'(z)=",f)$ 
print(" Required Analytic function is f(z)=",F)$ 

 
Program to construct analytic function when imaginary part is given in 𝑥 and 𝑦 (Cartesian Function). 

v:given function of 𝑥 and 𝑦$ 
v_x:diff(v,x)$ 
v_y:diff(v,y)$ 
f:radcan(subst([x=z, y=0], v_y+%i*v_x))$ 
F:radcan(integrate(f,z))$ 
print("v=",v)$ 
print("f'(z)=",f)$ 
print(" Required Analytic function is f(z)=",F)$ 
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Program to construct analytic function when real part is given in 𝑟 and 𝜃 (Polar Function). 

u: given function in r and θ $ 
u_r:diff(u,r)$ 
u_θ:diff(u,θ)$ 
f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(u_r-%i*u_θ/r)))$ 
F:radcan(integrate(f,z))$ 
print("u=",u)$ 
print("f'(z)=",f)$ 
print(" Required Analytic function is f(z)=",F)$ 

 

Program to construct analytic function when imaginary part is given in 𝑟 and 𝜃 (Polar Function). 

v:given function in r and θ $ 
v_r:diff(v,r)$ 
v_θ:diff(v,θ)$ 
f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(v_θ/r+%i*v_r)))$ 
F:radcan(integrate(f,z))$ 
print("v=",v)$ 
print("f'(z)=",f)$ 
print(" Required Analytic function is f(z)=",F)$ 

 

Worked Examples: 

Problem 1. Write a program to construct an analytic function whose real part is 𝑢 = 𝑙𝑜𝑔 √𝑥2 + 𝑦2. 

Program: 

 
 
 
 
 
 
 
 
 
 
 

Output: 

u:1/2*log(x^2+y^2)$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

f:radcan(subst([x=z, y=0], u_x-%i*u_y))$ 

F:radcan(integrate(f,z))$ 

print("u=",u)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 
 

log(𝑦2 + 𝑥2) 
𝑢 =    

2 
1 

𝑓′(𝑧) = 
𝑧

 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = log(𝑧) 
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Problem 2. Write a program to construct an analytic function whose real part is 𝑢 = 𝑠𝑖(𝑥) 𝑐𝑜𝑠ℎ(𝑦). 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

u:sin(x)*cosh(y)$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

f:radcan(subst([x=z, y=0], u_x-%i*u_y))$ 

F:radcan(integrate(f,z))$ 

print("u=",u)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 
 
 

𝑢 = sin(𝑥) cosh(𝑦) 

𝑓′(𝑧) = cos(𝑧) 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = sin(𝑧) 
 
 

Problem 3. Write a program to construct an analytic function whose real part is 𝑢 = 
sin(2𝑥)

 

cosh(2𝑦)−cos(2𝑥) 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

u:sin(2*x)/(cosh(2*y)-cos(2*x))$ 

u_x:diff(u,x)$ 

u_y:diff(u,y)$ 

f:trigreduce(trigrat(subst([x=z, y=0], u_x-%i*u_y)))$ 

F:trigreduce(trigrat(integrate(f,z)))$ 

print("u=",u)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 
 

sin(2𝑥) 
𝑢 = 

cosh(2𝑦) − cos(2𝑥) 

2 
𝑓′(𝑧) = 

cos(2𝑧) − 1 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = cot(𝑧) 



Page 31 of 57  

Problem 4. Construct an analytic function whose imaginary part is 𝑣 = 𝑒(𝑥 𝑠𝑖𝑛(𝑦) + 𝑦 𝑐𝑜𝑠(𝑦)) 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

v:exp(x)*(x*sin(y)+y*cos(y))$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

f:radcan(subst([x=z, y=0], v_y+%i*v_x))$ 

F:radcan(integrate(f,z))$ 

print("v=",v)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 
 
 

𝑣 = 𝑒(𝑥 sin(𝑦) + 𝑦 cos(𝑦)) 

𝑓′(𝑧) = (𝑧 + 1)%𝑒𝑧 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) = 𝑧%𝑒𝑧 

 

Problem 5. Construct an analytic function whose imaginary part is 𝑣 = − 
sinh(2𝑦)

 

cosh(2𝑦)−cos(2𝑥) 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

v:-sinh(2*y)/(cosh(2*y)-cos(2*x))$ 

v_x:diff(v,x)$ 

v_y:diff(v,y)$ 

f:radcan(subst([x=z, y=0], v_y+%i*v_x))$ 

F:radcan(integrate(f,z))$ 

print("v=",v)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 

print(" That is, f(z)=",trigreduce(trigrat(F)))$ 

 
sinh(2𝑦) 

𝑣 = − 
cosh(2𝑦) − cos(2𝑥) 

2 
𝑓′(𝑧) = 

cos(2𝑧) − 1 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) = 
 

𝑇ℎ𝑎𝑡 𝑖𝑠, 𝑓(𝑧) = 𝑐𝑜𝑡(𝑧) 

cos(2𝑧) + 1 

sin(2𝑧) 
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Problem 6. Write a program to construct an analytic function whose real part is 𝑢 = 
cos(𝜃)

 

𝑟 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 

u:cos(θ)/r$ 

u_r:diff(u,r)$ 

u_θ:diff(u,θ)$ 

f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(u_r-%i*u_θ/r)))$ 

F:radcan(integrate(f,z))$ 

print("u=",u)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 
 

cos(𝜃) 
𝑢 = 

𝑟
 

1 
𝑓′(𝑧) = − 

𝑧2 

1 
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) = 

𝑧
 

Problem 7. Write a program to construct an analytic function whose real part is 𝑢 = (𝑟 + 

Program: 

 

 
1 
) cos(𝜃) 

𝑟 

 
 
 
 
 
 
 
 
 
 

Output: 

u:(r+1/r)*cos(θ)$ 

u_r:diff(u,r)$ 

u_θ:diff(u,θ)$ 

f:subst([r=z, θ=0], exp(-%i*θ)*(u_r-%i*u_θ/r))$ 

F:integrate(f,z)$ 

print("u=",u)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 
 

1 
𝑢 = (𝑟 + ) cos(𝜃) 

𝑟 
1 

𝑓′(𝑧) = 1 − 
𝑧2 

1 
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) = 𝑧 + 

𝑧
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Problem 8. Write a program to construct an analytic function whose imaginary part is 𝑣 = (𝑟 − 

Program: 

1 
) sin(𝜃) 

𝑟 

 
 
 
 
 
 
 
 
 
 

Output: 

v:(r-1/r)*sin(θ)$ 

v_r:diff(v,r)$ 

v_θ:diff(v,θ)$ 

f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(v_θ/r+%i*v_r)))$ 

F:integrate(f,z)$ 

print("v=",v)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 
 

1 
𝑣 = (𝑟 − ) sin(𝜃) 

𝑟 
𝑧2 − 1 

𝑓′(𝑧) = 
𝑧2 

1 
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓(𝑧) = 𝑧 + 

𝑧
 

Problem 9. Write a program to construct an analytic function whose imaginary part is 𝑣 = 𝑟2 cos(2𝜃) 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

v:r^2*cos(2*θ)$ 

v_r:diff(v,r)$ 

v_θ:diff(v,θ)$ 

f:radcan(subst([r=z, θ=0], exp(-%i*θ)*(v_θ/r+%i*v_r)))$ 

F:radcan(integrate(f,z))$ 

print("v=",v)$ 

print("f'(z)=",f)$ 

print(" Required Analytic function is f(z)=",F)$ 
 
 

𝑣 = 𝑟2 cos(2𝜃) 

𝑓′(𝑧) = 2%𝑖𝑧 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = %𝑖𝑧2 
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Exercise: 

Write a program to construct an analytic function from the given real part (𝑢) or imaginary part (𝑣): 

1. 𝑢 = 𝑥2 − 𝑦2 (Answer: (𝑧) = 𝑧2) 

2. 𝑢 = 
𝑥4−𝑦4−2𝑥 

𝑥2+𝑦2 

(Answer: (𝑧) = 
𝑧3−2 

) 
𝑧 

3. 𝑢 = 𝑒2(𝑥 cos(2𝑦) − 𝑦 sin(2𝑦)) (Answer: 𝑓(𝑧) = 𝑧𝑒2𝑧 ) 

4. 𝑢 = 𝑟2 cos(2𝜃) (Answer: 𝑓(𝑧) = 𝑧2 ) 

5. 𝑣 = cos(𝑥) cosh(𝑦) (Answer: 𝑓(𝑧) = %𝑖 cos(𝑧) ) 

6. 𝑣 =  
𝑥−𝑦

 

𝑦2+𝑥2 

7. 𝑣 = − 
sin(𝜃) 

𝑟 

(Answer: (𝑧) = 
%𝑖+1 

) 
𝑧 

(Answer: (𝑧) = 
1 

) 
𝑧 

8. 𝑣 = √𝑟 𝑠𝑖𝑛 (
𝜃
) (Answer: (𝑧) = √𝑧 ) 

2 
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Experiment 5 

Program to find cross-ratio of points and related concepts. 

Aim: To find the cross ratio of given points and bilinear transformation related problems using 

Mathematics Softwares (FOSS). 

Software: Maxima 

Keys: 

Key Function 

%i 
 

 

Complex imaginary unit √−1 
assume(r>0) To declare that r is positive 
realpart (expr) Returns the real part of expr. 
imagpart (expr) Returns the imaginary part of the expression expr. 
conjugate (z) Returns the complex conjugate of z. 

 
abs (z) 

The abs function represents the mathematical absolute 
value function and works for both numerical and 
symbolic values. 

cabs (expr) 
Calculates the absolute value of an expression 
representing a complex number. 

atan2 (y, x) yields the value of atan(y/x) in the interval −%𝑝𝑖 to %𝑝𝑖. 

rectform (expr) 
Returns an expression 𝑎 + 𝑏 %𝑖 equivalent to expr, such 
that a and b are purely real 

:= The function definition operator. 

f(x_1, ..., x_n) := expr 
Defines a function named f with arguments x_1, …, x_n 
and function body expr 

subst ([eq_1, ..., eq_k], expr) 
For each equation, the right side will be substituted for 
the left in the expression expr. 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 
radicals. 

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise 
the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

solve (expr, x) 
Solves the algebraic equation expr for the variable x and 
returns a list of solution equations in x 

inf inf represents real positive infinity 
%pi; 𝜋, an irrational number 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 
2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 
3. Replace dollar ($) by semicolon (;) to see output of any input line. 
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

of all symbols 
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Definitions and Formulae: 

Cross Ratio: 

Let 𝑧1, 𝑧2, 𝑧3, 𝑧4 be four distinct points in the extended complex plane ℂ∞ then the following 

(𝑧1 − 𝑧2)(𝑧3 − 𝑧4) 

(𝑧2 − 𝑧3)(𝑧4 − 𝑧1) 

is called the cross ratio of 𝑧1, 𝑧2, 𝑧3, 𝑧4 and is denoted by ( 𝑧1, 𝑧2, 𝑧3, 𝑧4 ). By performing permutations 

on the four points 𝑧1, 𝑧2, 𝑧3, 𝑧4 we get 4! = 24 cross ratios but only six of them are distinct. Thus, 

distinct cross ratios of 𝑧1, 𝑧2, 𝑧3, 𝑧4 are given by: 

1) (𝑧1− 𝑧2)(𝑧3− 𝑧4) 

(𝑧2− 𝑧3)(𝑧4− 𝑧1) 

4) (𝑧1− 𝑧3)(𝑧4− 𝑧2) 

(𝑧3− 𝑧4)(𝑧2− 𝑧1) 

2) (𝑧1− 𝑧2)(𝑧4− 𝑧3) 

(𝑧2− 𝑧4)(𝑧3− 𝑧1) 

5) (𝑧1− 𝑧4)(𝑧2− 𝑧3) 

(𝑧4− 𝑧2)(𝑧3− 𝑧1) 

3) (𝑧1− 𝑧3)(𝑧2− 𝑧4) 

(𝑧3− 𝑧2)(𝑧4− 𝑧1) 

6) (𝑧1− 𝑧4)(𝑧3− 𝑧2) 

(𝑧4− 𝑧3)(𝑧2− 𝑧1) 
 

The values of these distinct cross ratios are related. If the first one is 𝜆 then the others will be: 

    , 1 − 𝜆,  1−𝜆, 1 , 1. In this manual we take the first value for cross ratio and define cross ratio 
1−𝜆 𝜆 1−𝜆 𝜆 

of 𝑧1, 𝑧2, 𝑧3, 𝑧4 as: 

(𝑧1 − 𝑧2)(𝑧3 − 𝑧4) 
 

Further note that, 

( 1, 𝑧2, 𝑧3, 𝑧4 ) = 
(𝑧
 

2 − 𝑧3 )(𝑧4  − 𝑧1) 

( 𝑧  , 𝑧 , 𝑧 , 𝑧 ) = 
(𝑧1− 𝑧2) if 𝑧 = ∞ 

1 2 3 4 (𝑧3− 𝑧1) 4
 

( 𝑧  , 𝑧 , 𝑧 , 𝑧 ) = 
(𝑧1− 𝑧2) if 𝑧 = ∞ 

1 2 3 4 (𝑧1− 𝑧4) 3
 

( 𝑧  , 𝑧 , 𝑧 , 𝑧 ) = 
(𝑧3− 𝑧4) if 𝑧 = ∞ 

1 2 3 4 (𝑧1− 𝑧4) 2
 

( 𝑧  , 𝑧 , 𝑧 , 𝑧 ) = 
(𝑧3− 𝑧4) if 𝑧 = ∞ 

1 2 3 4 (𝑧3− 𝑧2) 1
 

The linear transformation: A transformation of the form 𝑤 = 𝑎𝑧 + 𝑏, is called a linear transformation, 

where 𝑎 and 𝑏 are complex constants. 

Bilinear transformation: A transformation of the form 𝑤 = 
𝑎𝑧+𝑏

 
𝑐𝑧+𝑑 

is called a Bilinear transformation or 

linear fractional transformation, where 𝑎, 𝑏, 𝑐, 𝑑 are complex constants and 𝑎𝑑 − 𝑏𝑐 ≠ 0. This 

transformation is linear in both 𝑤 and 𝑧 and hence it is bilinear transformation. It is also called Mobius 

transformation. Inverse transformation is 𝑧 = 
−𝑑𝑤+𝑏

 
𝑐𝑤−𝑎 
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Preservation of cross ratio: Any bilinear transformation preserves cross ratio. i.e., cross ratio is 

invariant under a bilinear transformation. This fact can be used to find a bilinear transformation which 

maps 𝑧1, 𝑧2, 𝑧3 to 𝑤1, 𝑤2, 𝑤3 respectively by using: 

(𝑧 − 𝑧1)(𝑧2 − 𝑧3) (𝑤 − 𝑤1)(𝑤2 − 𝑤3) 
  = 

 
i.e., 

(𝑧1− 𝑧  2)(𝑧  3− 𝑧) (𝑤  −1 𝑤  )(𝑤2 — 3𝑤) 

(𝑤 − 𝑤1)(𝑤2 − 𝑤3)(𝑧1 − 𝑧2)(𝑧3 − 𝑧) = (𝑤1 − 𝑤2)(𝑤3 − 𝑤)(𝑧 − 𝑧1)(𝑧2 − 𝑧3) 

Further note that, 

(𝑤 − 𝑤1)(𝑤2 − 𝑤3)(𝑧1 − 𝑧2) = −(𝑤1 − 𝑤2)(𝑤3 − 𝑤)(𝑧 − 𝑧1) if 𝑧3 = ∞ 

(𝑤 − 𝑤1)(𝑤2 − 𝑤3)(𝑧3 − 𝑧) = −(𝑤1 − 𝑤2)(𝑤3 − 𝑤)(𝑧 − 𝑧1) if 𝑧2 = ∞ 

(𝑤 − 𝑤1)(𝑤2 − 𝑤3)(𝑧3 − 𝑧) = −(𝑤1 − 𝑤2)(𝑤3 − 𝑤)(𝑧2 − 𝑧3) if 𝑧1 = ∞ 

(𝑤 − 𝑤1)(𝑧1 − 𝑧2)(𝑧3 − 𝑧) = −(𝑤1 − 𝑤2)(𝑧 − 𝑧1)(𝑧2 − 𝑧3) if 𝑤3 = ∞ 

(𝑤 − 𝑤1)(𝑧1 − 𝑧2)(𝑧3 − 𝑧) = −(𝑤3 − 𝑤)(𝑧 − 𝑧1)(𝑧2 − 𝑧3) if 𝑤2 = ∞ 

(𝑤2 − 𝑤3)(𝑧1 − 𝑧2)(𝑧3 − 𝑧) = −(𝑤3 − 𝑤)(𝑧 − 𝑧1)(𝑧2 − 𝑧3) if 𝑤1 = ∞ 

Program: 

Program to find the cross ratio of four points ( 1, 𝑧2, 𝑧3, 𝑧4). 

z1:given value of 𝑧1$ 
z2: given value of 𝑧2$ 
z3: given value of 𝑧3$ 
z4: given value of 𝑧4$ 
CR:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$ 
print("Cross Ratio (z1, z2, z3, z4) =", CR)$ 

Program to check invariance of cross ratio of four points ( 1, 𝑧2, 𝑧3, 𝑧4) in a bilinear transformation. 

w(z):= given transformation$ 
z1:given value of 𝑧1$ 
z2: given value of 𝑧2$ 
z3: given value of 𝑧3$ 
z4: given value of 𝑧4$ 
CR1:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$ 
CR2:radcan(((w(z1)-w(z2))*(w(z3)-w(z4)))/((w(z2)-w(z3))*(w(z4)-w(z1))))$ 
print("Given transformation is w(z) =", w(z))$ 
print("Cross Ratio (z1, z2, z3, z4) =", rectform(CR1))$ 
print("Cross Ratio (w1, w2, w3, w4) =", rectform(CR2))$ 
if rectform(CR1)=rectform(CR2) then 
print("Cross ratio is invariant in the given transformation") 
else print("Cross ratio is not preserved in the given transformation")$ 
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Program to find bilinear transformation which maps 1, 𝑧2, 𝑧3 to 𝑤1, 𝑤2, 𝑤3 respectively 

z1: given value of 𝑧1$ 
z2: given value of 𝑧2$ 
z3: given value of 𝑧3$ 
w1: given value of 𝑤1$ 
w2: given value of 𝑤2$ 
w3: given value of 𝑤3$ 
eq:(w-w1)*(w2-w3)*(z1-z2)*(z3-z)=(w1-w2)*(w3-w)*(z-z1)*(z2-z3)$ 
print("Required Bilinear Transformation is w(z)=", radcan(rhs(solve(eq,w)[1])))$ 

 
Note: When one of the given points is infinity, use correct expressions given in definitions section. 

 
 
Worked Examples: 

Problem 1. Write a program to find the cross ratio of four points 𝑖, 1, 2 − 𝑖, 3. 

Program: 
 
 
 
 
 
 
 
 
 

Output: 

z1:%i$ 

z2:1$ 

z3:2-%i$ 

z4:3$ 

CR:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$ 

print("Cross Ratio (z1, z2, z3, z4) =", CR)$ 

 
%𝑖 + 1 

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = 
%𝑖 − 3

 

Problem 2. Write a program to find the cross ratio of four points 𝑖, 1, 2, ∞. 

Program: 
 
 
 
 
 
 
 
 
 

Output: 

z1:%i$ 

z2:1$ 

z3:2$ 

z4:inf$ 

CR:radcan((z1-z2)/(z3-z2))$ 

print("Cross Ratio (z1, z2, z3, z4) =", CR)$ 
 
 

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = %𝑖 − 1 
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Problem 3. Write a program to check invariance of cross ratio of four points (𝑖, 1, 2 − 𝑖, 3) in the 

transformation 𝑤 = 
1+𝑖𝑧

 

1−𝑖𝑧 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

 

w(z):=(1+%i*z)/(1-%i*z)$ 
z1:%i$ 
z2:1$ 
z3:2-%i$ 
z4:3$ 
CR1:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$ 
CR2:radcan(((w(z1)-w(z2))*(w(z3)-w(z4)))/((w(z2)-w(z3))*(w(z4)-w(z1))))$ 
print("Given transformation is w(z) =", w(z))$ 
print("Cross Ratio (z1, z2, z3, z4) =", rectform(CR1))$ 
print("Cross Ratio (w1, w2, w3, w4) =", rectform(CR2))$ 
if rectform(CR1)=rectform(CR2) then 
print("Cross ratio is invariant in the given transformation") 
else print("Cross ratio is not preserved in the given transformation")$ 

 
%𝑖𝑧 + 1 

𝐺𝑖𝑣𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = 
1 − %𝑖𝑧

 

2%𝑖 1 

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = − 
5 

− 
5

 

2%𝑖 1 

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑤1, 𝑤2, 𝑤3, 𝑤4) = −  
5 

− 
5

 

𝐶𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 
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Problem 4. Write a program to check invariance of cross ratio of four points (2, 𝑖, −2, −𝑖) in the 

transformation 𝑤 = 
5−4𝑧

 

4𝑧−2 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

 

w(z):=(5-4*z)/(4*z-2)$ 
z1:2$ 
z2:%i$ 
z3:-2$ 
z4:-%i$ 
CR1:radcan(((z1-z2)*(z3-z4))/((z2-z3)*(z4-z1)))$ 
CR2:radcan(((w(z1)-w(z2))*(w(z3)-w(z4)))/((w(z2)-w(z3))*(w(z4)-w(z1))))$ 
print("Given transformation is w(z) =", w(z))$ 
print("Cross Ratio (z1, z2, z3, z4) =", rectform(CR1))$ 
print("Cross Ratio (w1, w2, w3, w4) =", rectform(CR2))$ 
if rectform(CR1)=rectform(CR2) then 
print("Cross ratio is invariant in the given transformation") 
else print("Cross ratio is not preserved in the given transformation")$ 

 
5 − 4𝑧 

𝐺𝑖𝑣𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = 
4𝑧 − 2

 

24%𝑖 7 
𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = − 

25 
− 

25
 

24%𝑖 7 

𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑤1, 𝑤2, 𝑤3, 𝑤4) = −  
25 

− 
25

 

𝐶𝑟𝑜𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 
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Problem 5. Write a program to find the bilinear transformation which maps −𝑖, 0, 𝑖 to 

−1, 𝑖, 1 respectively. 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

z1:-%i$ 

z2:0$ 

z3:%i$ 

w1:-1$ 

w2:%i$ 

w3:1$ 

eq:(w-w1)*(w2-w3)*(z1-z2)*(z3-z)=(w1-w2)*(w3-w)*(z-z1)*(z2-z3)$ 

print("Required Bilinear Transformation is w(z)=",factor(rhs(solve(eq,w)[1])))$ 

 
%(𝑧 − 1) 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤 = − 
𝑧 + 1 

 
 

Problem 6. Write a program to find the bilinear transformation which maps   0, 1, ∞ to 

−5, − 1, 3 respectively. 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

z1:0$ 

z2:1$ 

z3:inf$ 

w1:-5$ 

w2:-1$ 

w3:3$ 

eq:(w-w1)*(w2-w3)*(z1-z2)=-(w1-w2)*(w3-w)*(z-z1)$ 

print("Required Bilinear Transformation is w(z)=", radcan(rhs(solve(eq,w)[1])))$ 
 

3𝑧 − 5 
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤 = 

𝑧 + 1 



Page 42 of 57  

Problem 7. Write a program to find the bilinear transformation which maps   1, 𝑖, − 1 to 

0, 1, ∞ respectively. 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

z1:1$ 

z2:%i$ 

z3:-1$ 

w1:0$ 

w2:1$ 

w3:inf$ 

eq:(w-w1)*(z1-z2)*(z3-z)=-(w1-w2)*(z-z1)*(z2-z3)$ 

print("Required Bilinear Transformation is w(z)=",factor(rhs(solve(eq,w)[1])))$ 

print("That is, w(z)=",rectform(factor(rhs(solve(eq,w)[1]))))$ 

 
(%𝑖 + 1)(𝑧 − 1) 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤 = 
(%𝑖 − 1)(𝑧 + 1)

 

%(𝑧 − 1) 
𝑇ℎ𝑎𝑡 𝑖𝑠, 𝑤(𝑧) = − 

𝑧 + 1 
 
 

Problem 8. Write a program to find the bilinear transformation which maps   ∞, 𝑖, 0 to 

0, 𝑖, ∞ respectively. 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

z1:inf$ 

z2:%i$ 

z3:0$ 

w1:0$ 

w2:%i$ 

w3:inf$ 

eq:(w-w1)*(z3-z)=(w1-w2)*(z2-z3)$ 

print("Required Bilinear Transformation is w(z)=",radcan(rhs(solve(eq,w)[1])))$ 
 

1 
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤 = − 

𝑧
 



Page 43 of 57  

Exercise: 

Write a program to find the cross ratio of four points ( 1, 𝑧2, 𝑧3, 𝑧4). 

1. 𝑧1 = 0, 𝑧2 = 3, 𝑧3 = 4, 𝑧4 = 6 (Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 = −1) 

2. 𝑧1 = 1, 𝑧2 = 𝑖, 𝑧3 = 0, 𝑧4 
= −𝑖 (Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 = 

𝑖−1
) 

𝑖+1 

3. 𝑧1 = 0, 𝑧2 = 𝑖, 𝑧 3 = ∞, 𝑧4 = −1 (Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 = −𝑖) 
 
 

Write a program to check invariance of cross ratio of four points ( 1, 𝑧2, 𝑧3, 𝑧4) 

in the given transformation 𝑤. 

1. 𝑧1 = 5, 𝑧2 = 3, 𝑧3 = −2, 𝑧4 
= 4 and 𝑤 = 

3𝑧−5
 

𝑧+1 
(Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡) 

2. 𝑧1 = 𝑖, 𝑧2 = 3, 𝑧3 = 2, 𝑧4 
= 0 and 𝑤 = 

𝑧+1
 

𝑧−1 
(Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡) 

3. 𝑧1 = 0, 𝑧2 = 1, 𝑧3 = −1, 𝑧4 
= 𝑖 and 𝑤 = 

1+𝑖−3𝑧
 

2−𝑖+𝑖𝑧 
(Answer: 𝐶𝑟𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 𝑖𝑠 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡) 

 
 

Write a program to find the bilinear transformation which maps 𝑧1, 𝑧2, 𝑧3 to 𝑤1, 𝑤2, 𝑤3 respectively. 

1. 𝑧1 = 1, 𝑧2 = −1, 𝑧3 = ∞ and 𝑤1 = 1 + 𝑖, 𝑤2 = 1 − 𝑖, 𝑤3 
= 1 (Answer: 𝑤 = 

𝑧+%𝑖
) 

𝑧 

2. 𝑧1 = −𝑖, 𝑧2 = 0, 𝑧3 = 𝑖 and 𝑤1 = −1, 𝑤2 = 𝑖, 𝑤3 
= 1 (Answer: 𝑤 = − 

%(𝑧−1)
) 

𝑧+1 

3. 𝑧1 = −1, 𝑧2 = 0, 𝑧3 = 1 and 𝑤1 = 0, 𝑤2 = 𝑖, 𝑤3 
= 3𝑖 (Answer: 𝑤 = − 

3%(𝑧+1)
) 

𝑧−3 

4. 𝑧1 = 1, 𝑧2 = 𝑖, 𝑧3 = −1 and 𝑤1 = 𝑖, 𝑤2 = 0, 𝑤3 
= −𝑖 (Answer: 𝑤 = − 

%𝑖𝑧+1
) 

%𝑖𝑧−1 
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Experiment 6 

Program to find fixed points of bilinear transformations. 

Aim: To find the fixed points of a bilinear transformation using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys: 
 

Key Function 

%i 
 

 

Complex imaginary unit √−1 
assume(r>0) To declare that r is positive 
realpart (expr) Returns the real part of expr. 
imagpart (expr) Returns the imaginary part of the expression expr. 
conjugate (z) Returns the complex conjugate of z. 

 
abs (z) 

The abs function represents the mathematical absolute 
value function and works for both numerical and 
symbolic values. 

cabs (expr) 
Calculates the absolute value of an expression 
representing a complex number. 

atan2 (y, x) yields the value of atan(y/x) in the interval −%𝑝𝑖 to %𝑝𝑖. 

rectform (expr) 
Returns an expression 𝑎 + 𝑏 %𝑖 equivalent to expr, such 
that a and b are purely real 

:= The function definition operator. 

f(x_1, ..., x_n) := expr 
Defines a function named f with arguments x_1, …, x_n 
and function body expr 

subst ([eq_1, ..., eq_k], expr) 
For each equation, the right side will be substituted for 
the left in the expression expr. 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 
radicals. 

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise 
the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

solve (expr, x) 
Solves the algebraic equation expr for the variable x and 
returns a list of solution equations in x 

inf inf represents real positive infinity 
%pi; 𝜋, an irrational number 

 
Note:1. Press Shift+Enter for evaluation of commands and display of output. 

2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 
3. Replace dollar ($) by semicolon (;) to see output of any input line. 
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

of all symbols 
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Definitions and Formulae: 

Bilinear transformation: A transformation of the form 𝑤 = 
𝑎𝑧+𝑏

 

𝑐𝑧+𝑑 

 
 
is called a Bilinear 

transformation or linear fractional transformation, where 𝑎, 𝑏, 𝑐, 𝑑 are complex constants and 

𝑎𝑑 − 𝑏𝑐 ≠ 0. This transformation is linear in both 𝑤 and 𝑧 and hence it is a bilinear 

transformation. It is also called Mobius transformation. Inverse transformation is 𝑧 = 
−𝑑𝑤+𝑏

 
𝑐𝑤−𝑎 

 
Fixed points or Invariant points of a transformation: If 𝑤 = (𝑧) is any transformation from 

the 𝑧 −plane to the 𝑤 −plane, the fixed points of the transformation are the solutions of the 

equation 𝑧 = 𝑓(𝑧). i.e., if 𝑤 = 𝑧 then it is a fixed point or invariant point of the transformation. 

A fixed point is mapped to itself in the transformation. Invariant points are got by taking 𝑤 = 

𝑧 in the transformation. 

 
Fixed points or Invariant points of a Bilinear transformation: Fixed points of a bilinear 

transformation 𝑤 = 
𝑎𝑧+𝑏

 

𝑐𝑧+𝑑 

are given by 𝑧 = 
𝑎𝑧+𝑏

. On simplification this equation, we get 
𝑐𝑧+𝑑 

𝑐𝑧2 + (𝑑 − 𝑎) − 𝑏 = 0. Since, it is a quadratic in z, a bilinear transformation will have at 

most two fixed points. In fact, 

1. 𝑤 = 
𝑎𝑧+𝑏 

will have two finite fixed points if 𝑐 ≠ 0 and (𝑑 − 𝑎)2 + 4𝑎𝑐 ≠ 0 
𝑐𝑧+𝑑 

2. 𝑤 = 
𝑎𝑧+𝑏 

will have one finite fixed point if 𝑐 ≠ 0 and (𝑑 − 𝑎)2 + 4𝑎𝑐 = 0 
𝑐𝑧+𝑑 

3. 𝑤 = 
𝑎𝑧+𝑏 

will have ∞ and one finite fixed point if 𝑐 = 0 and 𝑎 ≠ 𝑑 
𝑐𝑧+𝑑 

4. 𝑤 = 
𝑎𝑧+𝑏 

will have ∞ as the only fixed point if 𝑐 = 0 and 𝑎 = 𝑑 
𝑐𝑧+𝑑 

 
 
 

Program: 

Program to find the fixed points of a given bilinear transformation. 

w(z):= given function of 𝑧$ 

SOL:solve(z=w(z),z)$ 

print("Given Bilinear Transformation is w(z)=",w(z))$ 

if length(SOL)=0 then print("Fixed point of w(z) is",inf) 

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1]) 

else print("Fixed points of w(z) are",SOL[1], "and", SOL[2])$ 
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Worked Examples: 

Problem 1. Write a program to find the fixed points of bilinear transformation 𝑤 = 
1−𝑧

. 
1+𝑧 

Program: 
 
 
 
 
 
 
 
 
 

Output: 

 

w(z):=(1-z)/(1+z)$ 

SOL:solve(z=w(z),z)$ 

print("Given Bilinear Transformation is w(z)=",w(z))$ 

if length(SOL)=0 then print("Fixed point of w(z) is",inf) 

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1]) 

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$ 

 
1 − 𝑧 

𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = 
𝑧 + 1

 

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 (𝑧) 𝑎𝑟𝑒 𝑧 = −√2 − 1 𝑎𝑛𝑑 𝑧 = √2 − 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem 2. Write a program to find the fixed points of bilinear transformation 𝑤 = 
−3𝑧+5𝑖

. 
1−𝑖𝑧 

Program: 
 
 
 
 
 
 
 
 
 

Output: 

 

w(z):=(-3*z+5*%i)/(1-%i*z)$ 

SOL:solve(z=w(z),z)$ 

print("Given Bilinear Transformation is w(z)=",w(z))$ 

if length(SOL)=0 then print("Fixed point of w(z) is",inf) 

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1]) 

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$ 

 
5%𝑖 − 3𝑧 

𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤(𝑧) = 
1 − %𝑖𝑧 

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 (𝑧) 𝑎𝑟𝑒 𝑧 = %𝑖 𝑎𝑛𝑑 𝑧 = −5%𝑖 
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Problem 3. Write a program to find the fixed points of bilinear transformation 𝑤 = 
6𝑧−9

. 
𝑧 

Program: 
 
 
 
 
 
 
 
 
 

Output: 

 

w(z):=(6*z-9)/z$ 

SOL:solve(z=w(z),z)$ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 4. Write a program to find the fixed points of bilinear transformation 𝑤 = 𝑧 + 3. 

Program: 

w(z):=(-3*z+5*%i)/(1-%i*z)$ 

SOL:solve(z=w(z),z)$ 

print("Given Bilinear Transformation is w(z)=",w(z))$ 

print("Given Bilinear Transformation is w(z)=",w(z))$ 

if length(SOL)=0 then print("Fixed point of w(z) is",inf) 

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1]) 

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$ 

6𝑧 − 9 
𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤(𝑧) = 

𝑧
 

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 (𝑧) 𝑖𝑠 𝑧 = 3 
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Output: 

if length(SOL)=0 then print("Fixed point of w(z) is",inf) 

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1]) 

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$ 

 
𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = 𝑧 + 3 

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑤(𝑧) 𝑖𝑠 ∞ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 5. Write a program to find the fixed points of bilinear transformation 𝑤 = 
1   

. 
𝑧−2𝑖 

Program: 
 
 
 
 
 
 
 
 
 

Output: 

 

w(z):=(-3*z+5*%i)/(1-%i*z)$ 

SOL:solve(z=w(z),z)$ 

print("Given Bilinear Transformation is w(z)=",w(z))$ 

if length(SOL)=0 then print("Fixed point of w(z) is",inf) 

elseif length(SOL)=1 then print("Fixed point of w(z) is",SOL[1]) 

else print("Fixed points of w(z) are",SOL[1], "and",SOL[2])$ 

 
1 

𝐺𝑖𝑣𝑒𝑛 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 (𝑧) = 
𝑧 − 2%𝑖

 

𝐹𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑤(𝑧) 𝑖𝑠 𝑧 = %𝑖 
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Exercise: 

Write a program to find the fixed points of given bilinear transformation 𝑤. 

1. 𝑤 = 
3𝑧−5 

𝑧+1 

2. 𝑤 = 
6𝑧−2𝑖 

3−𝑖𝑧 

3. 𝑤 = 
𝑧+1

 

1−𝑧 

(Answer: 𝑧 = %𝑖 𝑎𝑛𝑑 𝑧 = −5% ) 

(Answer: 𝑧 = 2%𝑖 𝑎𝑛𝑑 𝑧 = % ) 

(Answer: 𝑧 = −%𝑖 𝑎𝑛𝑑 𝑧 = % ) 

4. 𝑤 = 2𝑧 + 3 (Answer: 𝑧 = −3 ) 

5. 𝑤 = 
𝑧

 

2−𝑧 

6. 𝑤 = 
3𝑧−4 

𝑧−1 

7. 𝑤 = 
3𝑖𝑧+1 

𝑧+𝑖 

8. 𝑤 = 
(𝑖+2)−2 

𝑧+𝑖 

(Answer: 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 1 ) 

(Answer: 𝑧 = 2 ) 

(Answer: 𝑧 = % ) 
 

(Answer: 𝑧 = 1 − %𝑖 𝑎𝑛𝑑 𝑧 = %𝑖 + 1 ) 

9. 𝑤 = 
𝑧−3

 

𝑧+1 

10. 𝑤 = 
1

 

𝑧 

(Answer: 

(Answer: 

 
 

𝑧 = −√3%𝑖 𝑎𝑛𝑑 𝑧 = √3% ) 

𝑧 = −1 𝑎𝑛𝑑 𝑧 = 1 ) 



Page 50 of 57  

Experiment 7 

Program to verify De-Moivre’s theorem. 

Aim: To verify DeMovire’s theorem using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys: 
 

Key Function 

%i 
 

 

Complex imaginary unit √−1 
assume(r>0) To declare that r is positive 
realpart (expr) Returns the real part of expr. 
imagpart (expr) Returns the imaginary part of the expression expr. 
conjugate (z) Returns the complex conjugate of z. 

 
abs (z) 

The abs function represents the mathematical absolute 
value function and works for both numerical and 
symbolic values. 

cabs (expr) 
Calculates the absolute value of an expression 
representing a complex number. 

rectform (expr) 
Returns an expression a + b %i equivalent to expr, such 
that a and b are purely real 

atan2 (y, x) yields the value of atan(y/x) in the interval -%pi to %pi. 

 
 
trigrat (expr) 

Gives a canonical simplified quasilinear form of a 
trigonometrical expression; expr is a rational fraction of 
several sin, cos or tan, the arguments of them are linear 
forms in some variables (or kernels) and %pi/n (n integer) 
with integer coefficients. 

subst (a, b, c) Substitutes a for b in c 

subst ([eq_1, ..., eq_k], expr) 
For each equation, the right side will be substituted for 
the left in the expression expr. 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 
radicals. 

if cond_1 then expr_1 else expr_0 evaluates to expr_1 if cond_1 evaluates to true, otherwise 
the expression evaluates to expr_0. 

exp (x) or %e^x Represents the exponential function 
sin (x) Trigonometric function sine of x 
%pi; 𝜋, an irrational number 

 
Note:1. Press Shift+Enter for evaluation of commands and display of output. 

2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 
3. Replace dollar ($) by semicolon (;) to see output of any input line. 
4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

of all symbols 
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Definitions and Formulae: 

DeMoivre’s Theorem: For any real number 𝜃 and integer 𝑛, 

(𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))𝑛 = 𝑐𝑜𝑠(𝑛𝜃) + 𝑖 𝑠𝑖𝑛(𝑛𝜃) 

Further, for any real number 𝜃 and natural number 𝑛, 𝑐𝑜𝑠 (
𝜃  

) + 𝑖 𝑠𝑖𝑛 (
𝜃
)   is one of roots of the 𝑛-th 

𝑛 𝑛 

1 1 

roots of (𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))𝑛 and all roots of 𝑛-th roots of (𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))𝑛 are given by 

𝜃 + 2𝜋𝑘 𝜃 + 2𝜋𝑘 
(𝑐𝑜𝑠 ( 

𝑛 
) + 𝑖 𝑠𝑖𝑛 ( 

𝑛 
)) 𝑓𝑜𝑟 𝑘 = 0, 1, 2, ⋯ , (𝑛 − 1). 

In fact, for any rational number 𝑝 in canonical form (𝑖. 𝑒. , 𝑝 ∈ ℤ, 𝑞 ∈ ℕ, 𝐻𝐶(𝑝, 𝑞) = 1), all 
𝑞 

𝑝 

values of (𝑐𝑜𝑠(𝜃) + 𝑖 𝑠𝑖𝑛(𝜃))𝑞 are given by 

𝑝𝜃 + 2𝜋𝑘 𝑝𝜃 + 2𝜋𝑘 
(𝑐𝑜𝑠 ( 

𝑞 
) + 𝑖 𝑠𝑖𝑛 ( 

𝑞 
)) 𝑓𝑜𝑟 𝑘 = 0, 1, 2, ⋯ , (𝑞 − 1). 

Verification of DeMoivre’s Theorem: DeMovire’s theorem can be easily verified by equating its LHS 

with RHS for given values of 𝜃 and 𝑛. 

Program: 

Program to verify DeMoivre’s Theorem for given values of 𝑛 and 𝜃 

kill(all)$ 

n: given value of n (if given)$ 

θ: given value of θ (if given)$ 

LHS:(cos(θ)+%i*sin(θ))^n$ 

RHS:cos(n*θ)+%i*sin(n*θ)$ 

print("LHS=",LHS)$ 

print("On simplication, LHS=",trigrat(LHS))$ 

print("RHS=",RHS)$ 

if trigrat(LHS)=RHS then 

print("DeMoivre's Theorem is verified") 

else print("DeMoivre's Theorem is not verified")$ 
 
 

NOTE: Sometimes we use rectform(LHS) in place of trigrat(LHS) in the above program for 

simplification. One can try different simplification functions to get right answer. 
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Worked Examples: 

Problem 1. Program to verify DeMoivre’s Theorem for 𝑛 = 2 and any 𝜃 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

kill(all)$ 

n:2$ 

LHS:(cos(θ)+%i*sin(θ))^n$ 

RHS:cos(n*θ)+%i*sin(n*θ)$ 

print("LHS=",LHS)$ 

print("On simplication, LHS=",trigrat(LHS))$ 

print("RHS=",RHS)$ 

if trigrat(LHS)=RHS then 

print("DeMoivre's Theorem is verified") 

else print("DeMoivre's Theorem is not verified")$ 
 
 

𝐿𝐻𝑆 = (%𝑖 sin(𝜃) + cos(𝜃))2 

𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = %𝑖 sin(2𝜃) + cos(2𝜃) 

𝑅𝐻𝑆 = %𝑖 sin(2𝜃) + cos(2𝜃) 

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 

Problem 2. Program to verify DeMoivre’s Theorem for 𝑛 = −3 and any 𝜃 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

kill(all)$ 

n:-3$ 

LHS:(cos(θ)+%i*sin(θ))^n$ 

RHS:cos(n*θ)+%i*sin(n*θ)$ 

print("LHS=",LHS)$ 

print("On simplication, LHS=",trigrat(LHS))$ 

print("RHS=",RHS)$ 

if trigrat(LHS)=RHS then 

print("DeMoivre's Theorem is verified") 

else print("DeMoivre's Theorem is not verified")$ 
 

1 
𝐿𝐻𝑆 = 

(%𝑖 sin(𝜃) + cos(𝜃))3 
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𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = cos(3𝜃) − %𝑖 sin(3𝜃) 

𝑅𝐻𝑆 = cos(3𝜃) − %𝑖 sin(3𝜃) 

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 

Problem 3. Program to verify DeMoivre’s Theorem for 𝑛 = 
1 

and any 𝜃 
2 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

 

kill(all)$ 

n:1/2$ 

LHS:(cos(θ)+%i*sin(θ))^n$ 

RHS:cos(n*θ)+%i*sin(n*θ)$ 

print("LHS=",LHS)$ 

print("On simplication, LHS=",trigrat(LHS))$ 

print("RHS=",RHS)$ 

if trigrat(LHS)=RHS then 

print("DeMoivre's Theorem is verified") 

else print("DeMoivre's Theorem is not verified")$ 

 

𝐿𝐻𝑆 = √%𝑖 sin(𝜃) + cos(𝜃) 

𝜃 𝜃 
𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = %𝑖 sin ( ) + cos ( ) 

2 2 
𝜃 𝜃 

𝑅𝐻𝑆 = %𝑖 sin ( ) + cos ( ) 
2 2 

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 
 

Problem 4. Program to verify DeMoivre’s Theorem for 𝑛 = 
1 

and 𝜃 = 
𝜋

 

3 4 

Program:  

kill(all)$ 

n:1/3$ 

θ:π/4$ 

LHS:(cos(θ)+%i*sin(θ))^n$ 

RHS:cos(n*θ)+%i*sin(n*θ)$ 

print("LHS=",LHS)$ 

print("On simplication, LHS=",trigrat(LHS))$ 

print("RHS=",RHS)$ 
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Output: 

if trigrat(LHS)=RHS then 

print("DeMoivre's Theorem is verified") 

else print("DeMoivre's Theorem is not verified")$ 
 
 

1 
%𝑖 1 3 

𝐿𝐻𝑆 = (    +     ) 
√2 √2 

𝜋 𝜋 
𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = %𝑖 sin ( ) + cos ( ) 

12 12 
𝜋 𝜋 

𝑅𝐻𝑆 = %𝑖 sin ( ) + cos ( ) 
12 12 

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 
 

Problem 5. Program to verify DeMoivre’s Theorem for 𝑛 = 
−2 

and 𝜃 = 
𝜋

 

3 6 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 

kill(all)$ 

n:-2/3$ 

θ:π/6$ 

LHS:(cos(θ)+%i*sin(θ))^n$ 

RHS:cos(n*θ)+%i*sin(n*θ)$ 

print("LHS=",LHS)$ 

print("On simplication, LHS=",rectform(LHS))$ 

print("RHS=",RHS)$ 

if rectform(LHS)=RHS then 

print("DeMoivre's Theorem is verified") 

else print("DeMoivre's Theorem is not verified")$ 
 

1 
𝐿𝐻𝑆 =  

(
%𝑖 

+
 

2 

2 

√3 3 

2 ) 

 
 

 
𝜋 𝜋 

𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐿𝐻𝑆 = cos ( ) − %𝑖 sin ( ) 
9 9 

𝜋 𝜋 
𝑅𝐻𝑆 = cos (

9
) − %𝑖 sin (

9
) 

𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 
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Exercise: 

Write a program to verify DeMoivre’s Theorem for given 𝑛 and 𝜃: 

1. 𝑛 = 
1

 

100 
and any 𝜃 (Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑) 

2. 𝑛 = −3 and 𝜃 = 
𝜋

 
6 

(Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑) 

3. 𝑛 = 
1

 

10 

and 𝜃 = 
𝜋

 

3 
(Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑) 

4. 𝑛 = −4 and 𝜃 = 
𝜋

 

3 
(Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑) 

5. 𝑛 = −3 and 𝜃 = 3 (Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑) 

6. 𝑛 = 4 and 𝜃 = 4 (Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑) 

7. 𝑛 = 
−2 

and 𝜃 = 
−𝜋 

(Answer: 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑) 
3 4 
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Experiment 9 
Program to find upper and the lower Riemann sums with respect to a given 
partition. 
 If 𝑎 = 𝑥଴ < 𝑥ଵ < ⋯ < 𝑥௡ = 𝑏, then the finite ordered set 𝑃 = {𝑥଴, 𝑥ଵ, … , 𝑥௡} is called a partition of 
[𝑎, 𝑏]. 
Let 𝑓: [𝑎, 𝑏] → ℝ be a bounded function and 𝑃 = {𝑎 = 𝑥଴, 𝑥ଵ, … , 𝑥௡ = 𝑏} be a partition of [𝑎, 𝑏]. Let 
𝛿௥ = 𝑥௥ − 𝑥௥ିଵ, is the length of each subinterval [𝑥௥ , 𝑥௥ିଵ], 𝑟 = 1, 2, … , 𝑛. 𝑓 is bounded on [𝑎, 𝑏] ⇒ 𝑓 is 
bounded on each subintervals [𝑥௥ , 𝑥௥ିଵ], 𝑟 = 1, 2, … , 𝑛. Let 𝑀௥ = Supremun of 𝑓 and 𝑚௥ = Infimum of 𝑓 in 
[𝑥௥ , 𝑥௥ିଵ], 𝑟 = 1, 2, … , 𝑛. Then 𝐿(𝑃, 𝑓) = ∑ 𝑚௥𝛿௥

௡
௡ୀଵ   is called the lower Reimann sum of 𝑓 and 𝑈(𝑃, 𝑓) =

∑ 𝑀௥𝛿௥
௡
௡ୀଵ   is called the upper Reimann sum of 𝑓. 

 

Program: Write a Maxima program to find upper and the lower Riemann sum of  𝑓(𝑥) = 𝑥ଶ over the 

partition 𝑝 = {0,
ଵ

ସ
,

ଶ

ସ
,

ଷ

ସ
, 1} of [0, 1].  

 

 kill(all)$ 
 f(x):=x^2; 
 a:0$ 
 b:1$ 
 n:4$ 
 delta_x:(b-a)/n$ 
 p:makelist(a+i* delta_x,i,0,n); 
 l_sum:0$ 
 u_sum:0$ 
 for i:1 thru length(p)-1 do 
 ( 
 i1(i):=[p[i],p[i+1]], 
 d(i):=p[i+1]-p[i], 
 m(i):=f(p[i]), 
 M(i):=f(p[i+1]), 
 l_sum:l_sum+m(i)*d(i), 
 u_sum:u_sum+M(i)*d(i)); 
 print("Upper sum",u_sum)$ 
 print("Lower sum",l_sum)$ 

 
Output: 

(%o1) f(x):=x^2 
(%o6) [0,1/4,1/2,3/4,1] 
(%o9) done 
 
"Upper sum"" "15/32" " 
 
"Lower sum"" "7/32" " 

Exercise: 
Write a Maxima program to find upper and the lower Riemann sum of  

1. 𝑓(𝑥) = sin (𝑥) for 𝑥 ∈ [0,
గ

ଶ
] and 𝑝 = {0,

𝜋

ସ
,

𝜋

ଶ
} of [0, 𝜋]. 

2. 𝑓(𝑥) = 𝑥ଷ for 𝑥 ∈ [0, 1] and 𝑝 = {0,
ଵ

ଷ
,

ଶ

ଷ
, 1} of [0, 1].  
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Experiment 10 
Program to test Riemann integrability. 

Lower Riemann Integral of f on [a,b] is define as sup {L(P,f)} 𝑝∈௣ P[a,b] and is denoted by ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
. 

Upper Riemann Integral of  f on [a,b] is defined as inf {U(P,f)} p P[a,b] and is denoted by∫ 𝑓(𝑥)𝑑𝑥
௕ത

௔
.  

Riemann Integral – A bounded function f is said to be Riemann integrable on [a,b] if 

 ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
= ∫ 𝑓(𝑥)𝑑𝑥

௕ത

௔
 and the common value is denoted by ∫ 𝑓(𝑥)𝑑𝑥

௕

௔
 

NOTE: Let P={a=} be a partition of [a,b] with n equal subintervals. Then length of each subinterval is       
 (௕ି௔)

௡
. 

If 𝑓(𝑥) is monotonically increasing in the subinterval [𝑥௥ , 𝑥௥ିଵ], then maximum attains at 𝑥௥ and hence 

𝑀௥ = Supremun of 𝑓 = 𝑓(𝑥௥) = 𝑓 ቀ𝑎 + 𝑟
௕ି௔

௡
ቁ, minimum attains at 𝑥௥ିଵ and hence 𝑚௥ = infimum of 𝑓 = 

𝑓(𝑥௥ିଵ) = 𝑓 ቀ𝑎 + (𝑟 − 1)
௕ି௔

௡
ቁ. 

If 𝑓(𝑥) is monotonically decreasing in the subinterval [𝑥௥ , 𝑥௥ିଵ], then maximum attains at 𝑥௥ିଵ and 

hence 𝑀௥ = Supremun of 𝑓 = 𝑓(𝑥௥ିଵ) = 𝑓 ቀ𝑎 + (𝑟 − 1)
௕ି௔

௡
ቁ, minimum attains at 𝑥௥ and hence 𝑚௥ = 

infimum of 𝑓 = 𝑓(𝑥௥) = 𝑓 ቀ𝑎 + 𝑟
௕ି௔

௡
ቁ. 

 

Program: Write a Maxima program to verify the function 𝑓(𝑥) = 𝑥ଷ is Reimann integral or not over [0, 1]. 
 kill(all)$ 
 f(x):=x^3; 
 a:0$ 
 b:1$ 
 Ir:[((r-1)*b)/n,(r*b)/n]$ 
 Mr:f(Ir[2])$ 
 mr:f(Ir[1])$ 
 dr:ratsimp(Ir[2]-Ir[1])$ 
 Ur:sum((mr*dr),r,1,n),simpsum$ 
 Ur1:ratsimp(Ur)$ 
 Lr:sum((mr*dr),r,1,n),simpsum$ 
 Lr1:ratsimp(Lr)$ 
 U_rsum:limit(Ur1,n,inf)$ 
 print("Upper Riemann integral is",U_rsum)$ 
 L_rsum:limit(Lr1,n,inf)$ 
 print("Lower Riemann integral is",L_rsum)$ 
 if U_rsum = L_rsum then 
 print("the given function is R-integrable on", [a,b]) 
 else 
 print("the given function is not R-integrable on", [a, b])$ 
Output:  
(%o1) f(x):=x^3 
"Upper Riemann integral is"" "1/4" " 
 
"Lower Riemann integral is"" "1/4" " 
 
"the given function is R-integrable on [0,1]"" "  
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Exercise: 
Write a Maxima program to verify the function 

1.  𝑓(𝑥) = 3𝑥 + 1 is Reimann integral or not over [1, 3].  
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Experiment 11 
Program to evaluate Riemann integral as a limit of sum. 

Program: Write a Maxima program to evaluate Riemann integral as a limit of sum of 𝑓(𝑥) = 2𝑥ଶ − 3𝑥 + 5 
in [0, 1]. 

 kill(all)$ 
 f(x):=2*x^2-3*x+5; 
 print("The function is bounded and continuous and hence integrable")$ 
 a:0$ 
 b:1$ 
 dr:(b-a)/n$ 
 xr:a+r*dr$ 
 sum:sum(f(xr)*dr,r,1,n),simpsum$ 
 s:ratsimp(sum)$ 
 L_sum:limit(s,n,inf)$ 
 print("Riemann integral as limit of sum is",L_sum)$ 

Output: 
(%o1) f(x):=2·x^2-3·x+5 
 
"The function is bounded and continuous and hence integrable" 
" " 
 
"Riemann integral as limit of sum is"" "25/6" " 
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Experiment 12 
Program to evaluate𝚪(𝒏) for 𝒏 is positive integer and non-integer. 

 

If 𝑛 > 0 then the integral ∫ 𝑥௡ିଵ𝑒ି௫ஶ

଴
𝑑𝑥 which is obviously a function of 𝑛, is called a Gemma function of 𝑛 and is denoted 

by Γ(𝑚, 𝑛). Thus Γ(𝑛) = ∫ 𝑥௡ିଵ𝑒ି௫ஶ

଴
𝑑𝑥 ∀  𝑛 > 0. Gamma function is called the Second Eulerian Integral. 

Program: Write a maxima program to evaluate Γ(2). 
 kill(all)$ 
 gamma(2); 
Output: 
 1 
Program: Write a maxima program to evaluate Γ(1/2). 
 kill(all)$ 
 gamma(1/2); 
Output: 
 sqrt(%pi) 
 

Exercise: 
Write a program to evaluate  

1. Γ(5).      Ans: 24 

2. Γ(7).   Ans: 720 

3. Γ(−1/2).  Ans: −2√π 

4. Γ(3/2).   Ans: √
஠

ଶ
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Experiment 13 
Program to evaluate𝛽(𝒎, 𝒏) for 𝒎 > 0 and 𝒏 > 0. 

If 𝑚 > 0, 𝑛 > 0 then the integral ∫ 𝑥௠ିଵ(1 − 𝑥)௡ିଵଵ

଴
𝑑𝑥 which is obviously a function of 𝑚 and 𝑛 is called a Beta function 

and is denoted by 𝛽(𝑚, 𝑛). Thus 𝛽(𝑚, 𝑛) = ∫ 𝑥௠ିଵ(1 − 𝑥)௡ିଵଵ

଴
𝑑𝑥 ∀ 𝑚 > 0, 𝑛 > 0. Beta function is called the first Eulerian 

Integral. 

Program: Write a maxima program to evaluate 𝛽(𝑥, 𝑦). 
 kill(all)$ 
 makefact(beta(x,y)); 

Output: 
 ((x-1)!*(y-1)!)/(y+x-1)! 
Program: Write a maxima program to evaluate 𝛽(2,3). 
 kill(all)$ 
 makefact(beta(2,3)); 
Output: 
 1/12 
 

Exercise: 
Write a program to evaluate  

1. 𝛽 ቀ
ହ

ଶ
,

ଷ

ଶ
ቁ   Ans: 

஠

ଵ଺
 

2. 𝛽 ቀ
ଵ

ଶ
,

ଵଵ

ଶ
ቁ  Ans: 

଺ଷ஠

ଶହ଺
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Experiment 1 

Program on multiple product of vectors: Scalar and Cross product. 

Aim: To find the Scalar and Cross Product of two vectors and Scalar triple product and Vector triple 
product of three vectors using Mathematics Softwares (FOSS). 

Software: Maxima 
Keys: 

 

Key Function 
load ("vect") vect is a package of functions for vector analysis. 

load ("vect") loads this package 
express (expr) Expands differential operator nouns into expressions in terms of partial 

derivatives. express recognizes the operators grad, div, curl, laplacian. 
:= To define a function/expression 

diff 
When diff is present as an evflag in call to ev, all differentiations indicated in 
expr are carried out. 

grad() gradient operator 
div() divergence operator 
laplacian() Laplacian operator 
curl() curl operator 
~ The wedge product operator is denoted by the tilde ~. This is used to compute 

cross product of vectors. 
* (asterik) Commutative Multiplication 
. (dot) Noncommutative multiplication and scalar product 

coeff (expr, x) 
Returns the coefficient of x in expr, where expr is a polynomial or a monomial 
term in x. 

apply(‘matrix, nested 
lists) 

Converts nested lists of same length into a matrix 

[a_1,…,a_n]; To create a list [a_1,…,a_n] 
A[i] [ and ] also enclose the subscripts of a list. A[i] will be i-th element of list A 

expand (expr) Expands expression expr. 
^ (Carrot Symbol) or ** For index/power/exponentiation (Commutative) 

 
trigreduce (expr, x) 

Combines products and powers of trigonometric and hyperbolic sin’s and cos’s 
of x into those of multiples of x. It also tries to eliminate these functions when 
they occur in denominators. If x is omitted then all variables in expr are used. 

determinant (M) Computes the determinant of M 
print (“text”, expr)$ Displays text within inverted commas and evaluates and displays expr 
radcan(expr) Simplifies expr, which can contain logs, exponentials, and radicals 
acos() arc cos or cos-1 function 

abs () 
The abs function represents the mathematical absolute value function and works 
for both numerical and symbolic values. 

mat_norm (M, frobenius) Return the frobenius (the Frobenius matrix norm) of the matrix M. 

load ("eigen") The package eigen contains several functions devoted to the symbolic 
computation of eigenvalues and eigenvectors. load ("eigen") loads this package 

unitvector (x) 
Returns x/norm(x); this is a unit vector in the same direction as x. 
load ("eigen") loads this function. 
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Definitions and Formulae: 

Plane Vectors and Space Vectors: Let 𝑃(𝑥, 𝑦) be a point in the plane. The position vector of 𝑃 is given 

by 𝑟⃗ = 𝑥 𝑖̂ + 𝑦 𝑗̂ where 𝑖 ̂and 𝑗̂ are unit vectors along positive 𝑥 −axis and 𝑦 −axis respectively. 

Similarly, for a point 𝑃(𝑥, 𝑦, 𝑧) in the space, the position vector is 𝑟 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ where 𝑖̂ and 

𝑗̂  and  𝑘̂ are unit vectors along positive 𝑥 −axis, 𝑦 −axis and 𝑧 −axis respectively. Thus, a vector 

𝑎⃗  = 𝑥 𝑖̂ + 𝑦 𝑗̂ 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 ∈ ℝ  is  a  plane  vector  and  𝑎⃗  = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦, 𝑧 ∈ ℝ  is  a 

space vector. 

Magnitude of a vector: Magnitude of a plane vector 𝑎⃗  = 𝑥 𝑖̂ + 𝑦 𝑗̂ is |𝑎⃗| = √𝑥2 + 𝑦2 and magnitude 

of a space vector 𝑎⃗  = 𝑥 𝑖̂ + 𝑦 𝑗̂  + 𝑧 𝑘̂ is |𝑎⃗| = √𝑥2 + 𝑦2 + 𝑧2. 

Unit vector: Unit vector in the direction of 𝑎⃗ is 𝑎̂ =  
𝑎⃗⃗  

. 
|𝑎⃗⃗| 

Scalar Product/ Dot product of two space vectors: For two space vectors 𝑎⃗  = 𝑥1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 𝑘̂  and 

𝑏⃗⃗ = 𝑥2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 𝑘̂, their scalar product or dot product is the scalar 𝑎⃗ ∙ 𝑏⃗  = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2. 

Also note that 𝑎⃗ ∙ 𝑏⃗⃗ = 𝑏⃗⃗ ∙ 𝑎⃗. 

Angle  two  space  vectors:  Angle  between  two  space  vectors  𝑎⃗  = 𝑥1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 𝑘̂  and  𝑏⃗⃗ = 𝑥2 𝑖̂ + 
 

𝑦2 
 

𝑗̂ + 𝑧2 𝑘̂, is given by  𝜃 = 𝑐𝑜𝑠−1 (
  𝑎⃗⃗∙𝑏⃗⃗  

). 
|𝑎⃗⃗||𝑏⃗⃗| 

Vector Product/ Cross Product of two space vectors: For two space vectors 𝑎⃗  = 𝑥1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 𝑘̂ and 

𝑏⃗⃗ = 𝑥2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 𝑘̂, their cross product or vector product 𝑎⃗ × 𝑏⃗⃗ is the vector  given by 

𝑖̂ 𝑗̂ 𝑘̂ 

𝑎⃗ × 𝑏⃗⃗ = |𝑥1 𝑦1 𝑧1| and 𝑏⃗  × 𝑎⃗  = −𝑎⃗ × 𝑏⃗⃗ 
𝑥2 𝑦2 𝑧2 

Scalar Triple Product/ Box product of three space vectors: For three space vectors 𝑎⃗ = 𝑥1 𝑖 ̂+ 𝑦1 𝑗̂ + 

𝑧1 𝑘̂,  𝑏⃗  = 𝑥2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 𝑘̂ and 𝑐 = 𝑥3 𝑖̂ + 𝑦3 𝑗̂ + 𝑧3 𝑘̂, their scalar triple product or box product 
 

𝑥1 𝑦1 𝑧1 
(𝑎⃗ × 𝑏⃗⃗) ∙ 𝑐 = 𝑎⃗ ∙ (𝑏⃗⃗ × 𝑐)  is the scalar [𝑎⃗, 𝑏⃗⃗, 𝑐] = |𝑥2 𝑦2 𝑧2|. 

𝑥3 𝑦3 𝑧3 

Vector  Triple  Product  of  three  space  vectors:  For  three  space  vectors  𝑎⃗  = 𝑥1 𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 𝑘̂,   𝑏⃗⃗ = 

𝑥2 𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 𝑘̂ and 𝑐 = 𝑥3 𝑖̂ + 𝑦3 𝑗̂ + 𝑧3 𝑘̂, their vector triple products are the vectors given by: 

(𝑎⃗ × 𝑏⃗⃗) × 𝑐 = (𝑎⃗ ∙ 𝑐) 𝑏⃗⃗ − (𝑏⃗⃗ ∙ 𝑐) 𝑎⃗ 

𝑎⃗ × (𝑏⃗⃗ × 𝑐) = (𝑎⃗ ∙ 𝑐) 𝑏⃗⃗ − (𝑎⃗ ∙ 𝑏⃗ ) 𝑐 

Area of Parallelogram and Volume of a Parallelepiped: Area of parallelogram whose sides are vectors 

𝑎⃗  and 𝑏⃗  is |𝑎⃗ × 𝑏⃗⃗| and the volume of a parallelepiped whose edges are vectors 𝑎⃗, 𝑏⃗  and 𝑐 is the 

absolute value of their scalar triple product [𝑎⃗, 𝑏⃗⃗, 𝑐]. 
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Program: 

Program to find the scalar product and cross product of two vectors. Also, to find the magnitude. 

(i.e. to find 𝑎⃗ ∙ 𝑏⃗⃗, 𝑎⃗ × 𝑏⃗⃗, 𝑏⃗⃗ × 𝑎⃗, |𝑎⃗ × 𝑏⃗⃗| and so on for 𝑎⃗  = 𝑎1 𝑖̂ + 𝑎2 𝑗̂ + 𝑎3𝑘̂ and 𝑏⃗⃗ = 𝑏1 𝑖̂ + 𝑏2 𝑗̂ + 𝑏3𝑘̂) 

load("vect")$ 
norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 
dot(x,y):=x.y$ 
cross(x,y):=ev(express(x~y),diff)$ 
J:[i,j,k]$ 
a:[a1, a2, a3] $ 
b: [b1, b2, b3] $ 
print("vector a=", a.J)$ 
print("vector b=", b.J)$ 
print("Dot Product a.b=",dot(a,b))$ 
print("Cross Product axb=", cross(a,b).J)$ 
print("Cross Product bxa=", cross(b,a).J)$ 
print("Magnitude of axb=", norm(cross(a,b)))$ 

 
Program to find the scalar triple product and vector triple product of three vectors. (i.e. to find [𝑎⃗, 𝑏⃗⃗, 𝑐], 

(𝑎⃗ × 𝑏⃗⃗) × 𝑐,  𝑎⃗ × (𝑏⃗⃗ × 𝑐) and so on for 𝑎⃗  = 𝑎1 𝑖 ̂+ 𝑎2 𝑗̂ + 𝑎3𝑘̂ , 𝑏⃗⃗ = 𝑏1 𝑖 ̂+ 𝑏2 𝑗̂ + 𝑏3𝑘̂  and 𝑐 = 𝑐1 𝑖 ̂+ 𝑐2 𝑗̂ + 𝑐3𝑘̂  ) 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

cross(x,y):=ev(express(x~y),diff)$ 

stp(x,y,z):=cross(x,y).z$ 

vtp1(x,y,z):=ev(express(cross(x,y)~z),diff)$ 

vtp2(x,y,z):=ev(express(x~cross(y,z)),diff)$ 

J:[i,j,k]$ 

a:[a1, a2, a3] $ 
b: [b1, b2, b3] $ 
c:[c1, c2, c3]$ 
print("vector a=", a.J)$ 

print("vector b=", b.J)$ 

print("vector c=", c.J)$ 

print("Scalar triple product [a,b,c]=", stp(a,b,c))$ 

print("Vector triple product (axb)xc=", vtp1(a,b,c).J)$ 

print("Vector triple product ax(bxc)=", vtp2(a,b,c).J)$ 

print("Magnitude of (axb)xc=", norm(vtp1(a,b,c)))$ 

print("Magnitude of ax(bxc)=", norm(vtp2(a,b,c)))$ 
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Worked Examples: 

Problem 1. Write a program to find i) 𝑎⃗ ∙ 𝑏⃗⃗ ii) 𝑎⃗ × 𝑏⃗⃗    iii) 𝑏⃗⃗ × 𝑎⃗  and  iv) |𝑎⃗ × 𝑏⃗ | 

where 𝑎⃗  = 2 𝑖̂ − 3 𝑗̂ −  𝑘̂ and 𝑏⃗⃗ =  𝑖̂ + 4 𝑗̂ − 2 𝑘̂ 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

 

load("vect")$ 
norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 
dot(x,y):=x.y$ 
cross(x,y):=ev(express(x~y),diff)$ 
J:[i,j,k]$ 
a:[2,-3,-1]$ 
b:[1,4,-2]$ 
print("vector a=", a.J)$ 
print("vector b=", b.J)$ 
print("Dot Product a.b=",dot(a,b))$ 
print("Cross Product axb=", cross(a,b).J)$ 
print("Cross Product bxa=", cross(b,a).J)$ 
print("Magnitude of axb=", norm(cross(a,b)))$$ 

 
𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = −𝑘 − 3𝑗 + 2𝑖 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −2𝑘 + 4𝑗 + 𝑖 

𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑎. 𝑏 = −8 

𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑥𝑏 = 11𝑘 + 3𝑗 + 10𝑖 

𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑏𝑥𝑎 = −11𝑘 − 3𝑗 − 10𝑖 
 

 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎𝑥𝑏 = √230 

Problem 2. Write a program to find i) 𝑎⃗ ∙ 𝑏⃗⃗    ii) 𝑎⃗ × 𝑏⃗⃗  iii) ) |𝑎⃗ × 𝑏⃗⃗| iv) (𝑎⃗ + 𝑏⃗⃗) × (𝑎⃗ − 𝑏⃗ ) 

v) unit vector of 𝑎⃗  where 𝑎⃗  = 2 𝑖̂ + 3 𝑗̂ −  𝑘̂ and 𝑏⃗⃗ =  𝑖̂ −  𝑗̂ − 2 𝑘̂ 

Program:  

load("vect")$ 
norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 
dot(x,y):=x.y$ 
cross(x,y):=ev(express(x~y),diff)$ 
J:[i,j,k]$ 
a:[2,3,-1]$ 
b:[1,-1,-2]$ 
print("vector a=", a.J)$ 
print("vector b=", b.J)$ 
print("Dot Product a.b=",dot(a,b))$ 
print("Cross Product axb=", cross(a,b).J)$ 
print("Magnitude of axb=", norm(cross(a,b)))$ 
print("Cross Product (a+b)x(a-b)=", cross(a+b,a-b).J)$ 
print("Unit vector of a=", expand(a.J/norm(a)))$ 
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Output:  

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = −𝑘 + 3𝑗 + 2𝑖 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −2𝑘 − 𝑗 + 𝑖 

𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑎. 𝑏 = 1 

𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑥𝑏 = −5𝑘 + 3𝑗 − 7𝑖 
 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎𝑥𝑏 = √83 

𝐶𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝑎 + 𝑏)𝑥(𝑎 − 𝑏) = 10𝑘 − 6𝑗 + 14𝑖 

𝑘 3𝑗 2𝑖 
𝑈𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑎 = − +   +    

√14 √14 √14 
 
 

Problem 3. Write a program to find i) [𝑎⃗, 𝑏⃗⃗, 𝑐]   ii) 𝑎⃗ × (𝑏⃗⃗ × 𝑐)   iii) 𝑎⃗ × (𝑏⃗⃗ × 𝑐)  iv) |𝑎⃗ × (𝑏⃗⃗ × 𝑐)| 

v) |𝑎⃗ × (𝑏⃗⃗ × 𝑐)| where 𝑎⃗  = 3 𝑖̂ − 𝑗̂ + 2 𝑘̂,  𝑏⃗⃗ =  2𝑖̂ +  𝑗̂ −  𝑘̂   and 𝑐 =  𝑖̂ −  2𝑗̂ + 2 𝑘̂ 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

load("vect")$ 
norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 
cross(x,y):=ev(express(x~y),diff)$ 
stp(x,y,z):=cross(x,y).z$ 
vtp1(x,y,z):=ev(express(cross(x,y)~z),diff)$ 
vtp2(x,y,z):=ev(express(x~cross(y,z)),diff)$ 
J:[i,j,k]$ 
a:[3,-1,2]$ 
b:[2,1,-1]$ 
c:[1,-2,2]$ 
print("vector a=", a.J)$ 
print("vector b=", b.J)$ 
print("vector c=", c.J)$ 
print("Scalar triple product [a,b,c]=", stp(a,b,c))$ 
print("Vector triple product (axb)xc=", vtp1(a,b,c).J)$ 
print("Vector triple product ax(bxc)=", vtp2(a,b,c).J)$ 
print("Magnitude of (axb)xc=", norm(vtp1(a,b,c)))$ 
print("Magnitude of ax(bxc)=", norm(vtp2(a,b,c)))$ 

 
𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = 2𝑘 − 𝑗 + 3𝑖 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −𝑘 + 𝑗 + 2𝑖 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑐 =2𝑘 − 2𝑗 + 𝑖 

𝑆𝑐𝑎𝑙𝑎𝑟 𝑡𝑟𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 [𝑎, 𝑏, 𝑐] = −5 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑎𝑥𝑏)𝑥𝑐 = −5𝑘 + 7𝑗 + 24𝑖 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑥(𝑏𝑥𝑐) = −15𝑘 + 15𝑗 + 15𝑖 
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𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 (𝑎𝑥𝑏)𝑥𝑐 = 5√26 
3 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎𝑥(𝑏𝑥𝑐) = 532 

3 3    3 
 

Note: In the above answer 532 = 5 × 32 = 5√33 = 15√3. Don’t confuse it as (53)2 

 
 

Problem 4. Write a program to find the angle between 𝑎⃗  = 2 𝑖̂ + 3𝑗̂ + 𝑘̂ and  𝑏⃗⃗ =  4𝑖̂ − 2𝑗̂ − 2𝑘̂ 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

dot(x,y):=x.y$ 

J:[i,j,k]$ 

a:[2,3,1]$ 

b:[4,-2,-2]$ 

θ:acos(dot(a,b)/(norm(a)*norm(b)))$ 

print("vector a=", a.J)$ 

print("vector b=", b.J)$ 

print("Angle between a and b is θ=", θ)$ 
 
 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = 𝑘 + 3𝑗 + 2𝑖 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −2𝑘 − 2𝑗 + 4𝑖 

𝜋 
𝐴𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑎𝑛𝑑 𝑏 𝑖𝑠 𝜃 = 

2
 

 

Problem 5. Write a program to find the area of parallelogram whose sides are 

𝑎⃗  =  𝑖̂ − 4𝑗̂ − 𝑘̂ and  𝑏⃗⃗ =  −2𝑖̂ − 𝑗̂ + 𝑘̂ 

Program:  
 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

cross(x,y):=ev(express(x~y),diff)$ 

J:[i,j,k]$ 

a:[1,-4,-1]$ 

b:[-2,-1,1]$ 

print("vector a=", a.J)$ 

print("vector b=", b.J)$ 

print("Area of Parallelogram=", norm(cross(a,b)))$ 
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Output:  

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = 𝑘 + 3𝑗 + 2𝑖 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −2𝑘 − 2𝑗 + 4𝑖 
 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 = √107 
 

 
Problem 6. Write a program to find the volume of parallelepiped whose edges are 

𝑎⃗  =  2𝑖̂ − 3𝑗̂, 𝑏⃗⃗ =  𝑖̂ + 𝑗̂ − 𝑘̂ and  𝑐 =  3𝑖̂ − 𝑘̂ 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

load("vect")$ 

cross(x,y):=ev(express(x~y),diff)$ 

stp(x,y,z):=cross(x,y).z$ 

J:[i,j,k]$ 

a:[2,-3,0]$ 

b:[1,1,-1]$ 

c:[3,0,-1]$ 

print("vector a=", a.J)$ 

print("vector b=", b.J)$ 

print("vector c=", c.J)$ 

print("Volume of Parallelopiped =", abs(stp(a,b,c)))$ 
 
 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 = 2𝑖 − 3𝑗 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 = −𝑘 + 𝑗 + 𝑖 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑐 = 3𝑖 − 𝑘 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑒𝑝𝑖𝑝𝑒𝑑 = 4 
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Exercise: 

I. Write a program to find i) 𝑎⃗ ∙ 𝑏⃗⃗ ii) 𝑏⃗⃗ ∙ 𝑎⃗ iii) 𝑎⃗ × 𝑏⃗⃗ iv) 𝑏⃗  × 𝑎⃗    v) |𝑎⃗ × 𝑏⃗ |   vi) |𝑏⃗⃗ × 𝑎⃗| 

vii) |𝑎⃗|   viii) |𝑏⃗⃗|  for given pair of vectors: 

1. 𝑎⃗  = 2 𝑖̂ + 2 𝑗̂ −  𝑘̂   and 𝑏⃗⃗ =  6𝑖̂ − 3 𝑗̂ + 2 𝑘̂ 

2. 𝑎⃗  = 3 𝑖̂ − 2 𝑗̂ + 𝑘̂   and 𝑏⃗⃗ =  𝑖̂ − 3 𝑗̂ + 5 𝑘̂ 

 

II. Write a program to find i) [𝑎⃗, 𝑏⃗⃗, c⃗]   ii) 𝑎⃗ × (𝑏⃗⃗ × 𝑐)   iii) 𝑎⃗ × (𝑏⃗  × 𝑐)   for the following 

space vectors: 

1.  𝑎⃗  =  𝑖̂ − 2𝑗̂ − 3 𝑘̂,  𝑏⃗⃗ =  2𝑖̂ +  𝑗̂ −  𝑘̂   and 𝑐 =  𝑖̂ + 3𝑗̂ − 2 𝑘̂ 

2.  𝑎⃗  = 3 𝑖̂ + 2𝑗̂ − 6 𝑘̂,  𝑏⃗  =  4𝑖̂ − 3 𝑗̂ +  𝑘̂   and 𝑐 =  4𝑖̂ −  2𝑗̂ + 4 𝑘̂ 
 
 

III. Write a program to find the angle between the following vectors: 

1.  𝑎⃗  = 𝑖̂ + 𝑗̂ and  𝑏⃗  =  𝑗̂ + 𝑘̂ (Ans 𝜃 = 
𝜋  

) 
3 

2. 𝑎⃗  = 3 𝑖̂ + 2 𝑗̂ − 6𝑘̂   and 𝑏⃗⃗ =  4𝑖̂ − 3 𝑗̂ +  𝑘̂ (Ans 𝜃 = 
𝜋  

) 
2 

3. 𝑎⃗  = 4 𝑖̂ − 2 𝑗̂ + 4𝑘̂   and 𝑏⃗⃗ =  3 𝑖̂ − 6 𝑗̂ −  2 𝑘̂ (Ans 𝜃 = acos ( 
8 

) ) 
21 

 
 

IV. Write a program to find the area of parallelogram whose sides are 

1.  𝑎⃗  =  𝑖̂ − 2𝑗̂ − 3 𝑘̂,  𝑏⃗⃗ =  2𝑖̂ +  𝑗̂ −  𝑘̂ (Ans 5√3 ) 

2.  𝑎⃗  = 3 𝑖̂ + 2𝑗̂ − 6 𝑘̂,  𝑏⃗  =  4𝑖̂ − 3 𝑗̂ +  𝑘̂ (Ans 7√26 ) 
 

V. Write a program to find the volume of parallelepiped whose edges are 

1.  𝑎⃗  =  𝑖̂ − 2𝑗̂ − 3 𝑘̂,  𝑏⃗⃗ =  2𝑖̂ +  𝑗̂ −  𝑘̂   and 𝑐 =  𝑖̂ + 3𝑗̂ − 2 𝑘̂ (Ans 20) 

2.  𝑎⃗  = 3 𝑖̂ + 2𝑗̂ − 6 𝑘̂,  𝑏⃗  =  4𝑖̂ − 3 𝑗̂ +  𝑘̂   and 𝑐 =  4𝑖̂ −  2𝑗̂ + 4 𝑘̂ (Ans 78) 
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Experiment 2 

Program on Vector Differentiation and finding the Unit Tangent. 

Aim: To find the derivatives of vector point functions and unit tangent vector using 
Mathematics Softwares (FOSS). 

Software: Maxima 
Keys: 

 

Key Function 
load ("vect") vect is a package of functions for vector analysis. 

load ("vect") loads this package 
express (expr) Expands differential operator nouns into expressions in terms of 

partial derivatives. express recognizes the operators grad, div, curl, 
laplacian. 

:= To define a function/expression 

diff 
When diff is present as an evflag in call to ev, all differentiations 
indicated in expr are carried out. 

~ The wedge product operator is denoted by the tilde ~. This is used to 
compute cross product of vectors. 

trigsimp (expr) Employs Pythagorean identities of trigonometric functions to 
simplify expressions. 

* (asterik) Commutative Multiplication 
. (dot) Noncommutative multiplication and scalar product 

coeff (expr, x) 
Returns the coefficient of x in expr, where expr is a polynomial or a 
monomial term in x. 

apply(‘matrix, nested lists) Converts nested lists of same length into a matrix 
[a_1,…,a_n]; To create a list [a_1,…,a_n] 

A[i] 
[ and ] also enclose the subscripts of a list. A[i] will be i-th 
element of list A 

diff (expr, x) 
Returns the first partial derivative of expr with respect to the 
variable x. 

^ (Carrot Symbol) or ** For index/power/exponentiation (Commutative) 

trigreduce (expr, x) 
Combines products and powers of trigonometric and hyperbolic 
sin’s and cos’s of x into those of multiples of x. 

ev (expr, arg_1, …, arg_n) Evaluates the expression expr in the environment specified by 

the arguments arg_1, …, arg_n. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

radcan(expr) 
Simplifies expr, which can contain logs, exponentials, and 
radicals 

factorout (expr,t) 
Rearranges the sum expr into a sum of terms of the form f 
(t)*g where g is a product of expressions not containing t 

expand (expr) Expand expression expr. 
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Definitions and Formulae: 

Vector Function of a scalar variable: Let 𝑡 be a scalar variable. If for each value of 𝑡 there 

corresponds a unique vector 𝐹⃗, then 𝐹⃗ is called a vector function of the scalar variable 𝑡. If 𝐹⃗ is a 

space vector, then it will be of the form 𝐹⃗(𝑡) = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ where 
𝑓1(𝑡), 𝑓2(𝑡) 𝑎𝑛𝑑 𝑓3(𝑡) are functions of 𝑡. 

Derivative of a Vector Function: Let 𝐹⃗(𝑡) = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ be a vector function of a 

scalar variable 𝑡. Then the derivatives of 𝐹⃗(𝑡) w.r.t. 𝑡 are defined as: 
𝑑  

(𝐹⃗(𝑡)) =  
𝑑  

(𝑓 (𝑡)) 𝑖̂ +  
𝑑  

(𝑓 (𝑡))𝑗̂ +  
𝑑  

(𝑓 (𝑡))𝑘̂ 
    

𝑑𝑡 

𝑑2 
⃗
 

 
 

𝑑𝑡 1 

𝑑2 
 

 

𝑑𝑡 2 

𝑑2 
 

 

𝑑𝑡 3 

𝑑2 
̂
 

 
 

𝑑𝑡2 (𝐹(𝑡)) = 
𝑑𝑡2 

(𝑓1(𝑡)) 𝑖̂ + 
𝑑𝑡2 

(𝑓2(𝑡))𝑗 ̂+ 
𝑑𝑡2 

(𝑓3(𝑡))𝑘 

and so on. Further, if 𝑡 is time then  𝑑  (𝐹⃗(𝑡)) is the velocity and  𝑑
2   

(𝐹⃗(𝑡)) is the acceleration at 

any time 𝑡. 
𝑑𝑡 𝑑𝑡2 

Space Curve: Let 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂ be the position vector of point 𝑃(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)). 
Then, 𝑟⃗(𝑡) represents a space curve. 

Tangent Vector and the Unit Tangent Vector: Let 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂ be a space curve. 

Then the derivative 𝑑 (𝑟⃗(𝑡)) at a point 𝑃(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) represents a vector along the tangent to the 
𝑑𝑡 

curve at 𝑃. This is called tangent vector to 𝑟 at 𝑃 is denoted by 𝑇⃗⃗. A unit vector in the direction of 𝑇⃗⃗ is 
called the unit tangent vector at P. This unit tangent vector is denoted by 𝑇̂. Thus, 

𝑇⃗⃗ =  
𝑑  

(𝑟(𝑡)) =  
𝑑  

(𝑥(𝑡)) 𝑖̂ +  
𝑑  

(𝑦(𝑡))𝑗̂ +  
𝑑  

(𝑧(𝑡))𝑘̂ 
𝑑𝑡 𝑑𝑡 

𝑇̂  =   
𝑇⃗⃗ 

𝑑𝑡 𝑑𝑡 

|𝑇⃗⃗| 

Program: 

Program to find the unit tangent vector to space curve 𝑟 = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ at 𝑡 = 𝑡0. 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

r:[f1(t), f2(t), f3(t)]$ 

r1:diff(r,t)$ 

T:r1.J/norm(r1)$ 

print("Space Curve r=", r.J)$ 

print("Unit Tangent Vector is T=",T)$ 

print("Unit Tangent Vector at given point is T=",expand(ev(T,t=t0)))$ 
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Program to find the velocity and acceleration of space curve 𝑟 = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂ at 𝑡 = 𝑡0. 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

r:[f1(t), f2(t), f3(t)]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

print("Space Curve r=", r.J)$ 

print("Velocity is v=",r1.J)$ 

print("Acceleration is a=",r2.J)$ 

print("Magnitude of v at given point =", ev(norm(r1),t= t0))$ 

print("Magnitude of a at given point =", ev(norm(r2),t= t0))$ 

 
 

Worked Examples: 

Problem 1. Write a program to find the unit tangent to the curve 𝑟 = 𝑡2 𝑖̂ + 2𝑡𝑗̂ − 𝑡3𝑘̂ at 𝑡 = 1. 

Program: 

 
 
 
 
 
 
 
 
 
 
 

 
Output: 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

r:[t^2,2*t,-t^3]$ 

r1:diff(r,t)$ 

T:r1.J/norm(r1)$ 

print("Space Curve r=", r.J)$ 

print("Unit Tangent Vector is T=",T)$ 

print("Unit Tangent Vector at given point is T=",expand(ev(T,t=1)))$ 
 
 

𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 = −𝑘𝑡3 + 𝑖𝑡2 + 2𝑗𝑡 

−3𝑘𝑡2 + 2𝑖𝑡 + 2𝑗 
𝑈𝑛𝑖𝑡 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑇 =    

√9𝑡4 + 4𝑡2 + 4 
3𝑘 2𝑗 2𝑖 

𝑈𝑛𝑖𝑡 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = − +   +    
√17 √17 √17 
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Problem 2. Write a program to find the unit tangent to the curve 𝑟 = 𝑐𝑜𝑠(3𝑡) 𝑖̂ + 𝑠𝑖𝑛(3𝑡)𝑗̂ + 4𝑡𝑘̂ at 𝑡 = 
𝜋
. 

4 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

r:[cos(3*t),sin(3*t),4*t]$ 

r1:diff(r,t)$ 

T:r1.J/norm(r1)$ 

print("Space Curve r=", r.J)$ 

print("Unit Tangent Vector is T=",expand(trigsimp(T)))$ 

print("Unit Tangent Vector at given point is T=",expand(ev(T,t=π/4)))$ 
 
 

𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 = 𝑗 sin(3𝑡) + 𝑖 cos(3𝑡) + 4𝑘𝑡 

 
𝑈𝑛𝑖𝑡 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑇 = − 

3𝑖 sin(3𝑡) 

5 
+ 

3𝑗 cos(3𝑡) 

5 
+ 

4𝑘 
 

 

5 
4𝑘 3𝑗 3𝑖 

𝑈𝑛𝑖𝑡 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = 5 
− 

5√2 
− 

5√2 
 
 

Problem 3. Write a program to find the velocity and acceleration of a particle moving along the curve 

𝑟 = (1 − 𝑡3) 𝑖̂ + (1 + 𝑡2)𝑗̂ + (2𝑡 − 5)𝑘̂ at any time 𝑡. 

Program: 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

load("vect")$ 

J:[i,j,k]$ 

r:[1-t^3, 1+t^2, 2*t-5]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

print("Space Curve r=", r.J)$ 

print("Velocity is v=",r1.J)$ 

print("Acceleration is a=",r2.J)$ 

 
𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 = 𝑖(1 − 𝑡3) + 𝑗(𝑡2 + 1) + 𝑘(2𝑡 − 5) 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑠 𝑣 = −3𝑖𝑡2 + 2𝑗𝑡 + 2𝑘 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 = 2𝑗 − 6𝑖𝑡 
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Problem 4. Write a program to find the velocity and acceleration of a particle moving along the curve 

𝑟 = 𝑒−𝑡 𝑖̂ + 2𝑐𝑜𝑠(3𝑡)𝑗̂ + 2𝑠𝑖𝑛(3𝑡)𝑘̂ at any time 𝑡. Also find the magnitude of velocity and 

acceleration at 𝑡 = 0 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

 
load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

r:[exp(-t), 2*cos(3*t), 2*sin(3*t)]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

print("Space Curve r=", r.J)$ 

print("Velocity is v=",r1.J)$ 

print("Acceleration is a=",r2.J)$ 

print("Velocity at given point is v=",ev(r1.J, t=0))$ 

print("Acceleration at given point is a=",ev(r2.J,t=0))$ 

print("Magnitude of v at given point =", ev(norm(r1),t=0))$ 

print("Magnitude of a at given point =", ev(norm(r2),t=0))$ 

 
𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 = 2𝑘 sin(3𝑡) + 2𝑗 cos(3𝑡) + 𝑖%𝑒−𝑡 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑠 𝑣 = −6𝑗 sin(3𝑡) + 6𝑘 cos(3𝑡) − 𝑖%𝑒−𝑡 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 = −18𝑘 sin(3𝑡) − 18𝑗 cos(3𝑡) + 𝑖%𝑒−𝑡 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑣 = 6𝑘 − 𝑖 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑎 = 𝑖 − 18𝑗 
 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑣 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 = √37 
 

 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 = 5√13 
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Problem 5. Write a program to find the velocity and acceleration and their magnitudes of a particle 

moving along the curve  𝑟 = (𝑠𝑖𝑛 𝑡) 𝑖̂ + (𝑐𝑜𝑠 𝑡) 𝑗̂ + 𝑡 𝑘̂ at any time 𝑡. 
Program: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

r:[sin(t), cos(t), t]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

print("Space Curve r=", r.J)$ 

print("Velocity is v=",r1.J)$ 

print("Acceleration is a=",r2.J)$ 

print("Magnitude of v at any point =", trigsimp(norm(r1)))$ 

print("Magnitude of a at any point =", trigsimp(norm(r2)))$ 

 
𝑆𝑝𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑒 𝑟 =𝑖 sin(𝑡) + 𝑗 cos(𝑡) + 𝑘𝑡 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑠 𝑣 = −𝑗 sin(𝑡) + 𝑖 cos(𝑡) + 𝑘 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 = −𝑖 sin(𝑡) − 𝑗 cos(𝑡) 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑣 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 = √2 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎 𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 = 1 
 
 

Exercise: 

I. Write a program to find the unit tangent to the curve 𝑟⃗ at given point 𝑡: 

1. 𝑟 = (𝑡2 + 1) 𝑖̂ + (4𝑡 − 3) 𝑗̂ + (2𝑡2 − 6𝑡) 𝑘̂   at 𝑡 = 2. 

2. 𝑟 = 2𝑡2 𝑖̂ + (𝑡2 − 4𝑡) 𝑗̂ + (3𝑡 − 5) 𝑘̂   at 𝑡 = −1. 

3. 𝑟 = 𝑡 𝑖̂ + 𝑡2 𝑗̂ + 𝑡3 𝑘̂   at 𝑡 = −1. 

 
II. Write a program to find the velocity and acceleration of a particle moving along the curve 

𝑟⃗ at any time 𝑡. Also find the magnitude of velocity and acceleration at given 𝑡: 

1. 𝑟 = (2 𝑠𝑖𝑛 3𝑡) 𝑖̂ + (2 𝑐𝑜𝑠 3𝑡) 𝑗̂ + (8𝑡) 𝑘̂   at any time 𝑡 

2. 𝑟 = (4 𝑐𝑜𝑠 𝑡) 𝑖̂ + (4 𝑠𝑖𝑛 𝑡) 𝑗̂ + (6𝑡) 𝑘̂   at 𝑡 = 0. 

3. 𝑟 = (𝑡3 − 4𝑡) 𝑖̂ + (𝑡2 + 4𝑡) 𝑗̂ + (8𝑡2 − 3𝑡3) 𝑘̂   at 𝑡 = 2. 
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Experiment 3 

Program to find Curvature and Torsion of a space curve. 

Aim: To find the Curvature and Torsion for a space curve at a given point using 
Mathematics Softwares (FOSS). 

Software: Maxima 
Keys: 

 

Key Function 
load ("vect") vect is a package of functions for vector analysis. 

load ("vect") loads this package 
express (expr) Expands differential operator nouns into expressions in terms of 

partial derivatives. express recognizes the operators grad, div, curl, 
laplacian. 

:= To define a function/expression 

diff 
When diff is present as an evflag in call to ev, all differentiations 
indicated in expr are carried out. 

~ The wedge product operator is denoted by the tilde ~. This is used to 
compute cross product of vectors. 

trigsimp (expr) Employs Pythagorean identities of trigonometric functions to 
simplify expressions. 

* (asterik) Commutative Multiplication 
. (dot) Noncommutative multiplication and scalar product 

coeff (expr, x) 
Returns the coefficient of x in expr, where expr is a polynomial 
or a monomial term in x. 

apply(‘matrix, nested lists) Converts nested lists of same length into a matrix 
[a_1,…,a_n]; To create a list [a_1,…,a_n] 
A[i] [ and ] also enclose the subscripts of a list. A[i] will be i-th 

element of list A 

diff (expr, x) 
Returns the first partial derivative of expr with respect to the 
variable x. 

^ (Carrot Symbol) or ** For index/power/exponentiation (Commutative) 
trigreduce (expr, x) Combines products and powers of trigonometric and hyperbolic 

sin’s and cos’s of x into those of multiples of x. It also tries to 
eliminate these functions when they occur in denominators. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

radcan(expr) Simplifies expr, which can contain logs, exponentials, and 
radicals 

/ (Backward Slash) Division 
ev (expr, arg_1, …, arg_n) Evaluates the expression expr in the environment specified by 

the arguments arg_1, …, arg_n. 
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Definitions and Formulae: 

Fundamental vectors of a Space Curve: Let 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂  be a space curve. With 
usual notations, let T, N, and B represent the unit tangent, the principal normal and the binormal 
respectively, to 𝑟⃗(𝑡) at any point 𝑡. These three unit vectors form a localized right-handed (B=T×N) 
coordinate system (TNB frame or Frenet Frame) at any specified point of 𝑟⃗(𝑡). 

Curvature and Radius of Curvature of a space curve: For a space curve Let 𝑟⃗(𝑡) = 𝑥(𝑡) 𝑖 ̂+ 

𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂, the unit tangent T and the principal normal N are connected by the relation 
𝑑𝑻 = 𝜅𝑵, where s is arc length parameter. Here 𝜅 is called the curvature and the quantity 𝜌 = 

1 
is 

𝑑𝑠 
 

called the radius of curvature. Thus, 
 
𝜅 = | 

 
𝑑𝑻 

| 
𝑑𝑠 

𝜅 

|𝑟⃗⃗𝘍(𝑡)×𝑟⃗⃗⃗ 𝘍⃗⃗𝘍(𝑡)| 

3 . 
|𝑟⃗⃗𝘍(𝑡)| 

 

Torsion and Radius of Torsion of a space curve:  For a space curve 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘̂, 

the binormal B and the principal normal N are connected by the relation 𝑑𝑩 = −𝑟𝑵, where s is arc 
𝑑𝑠 

length parameter. Here 𝑟 is called the torsion and the quantity 𝜎 = 
1 

is called the radius of torsion. 
𝑐 

Thus, 𝑟 = | 𝑑𝑩
| =

 [ 𝑟⃗⃗𝘍(𝑡),   𝑟⃗⃗⃗𝘍⃗⃗𝘍(𝑡), 𝑟⃗⃗⃗ 𝘍⃗⃗𝘍⃗⃗𝘍(𝑡) ] 
2 . 

𝑑𝑠 |𝑟⃗⃗𝘍(𝑡)×𝑟⃗⃗⃗ 𝘍⃗⃗𝘍(𝑡)| 
 

Note: Greek Letters 𝜅 and 𝑟 denote Curvature and Torsion respectively. But to avoid confusion between 

𝜅 & 𝑘̂ and 𝑟 & 𝑡, in the following programs K is used for Curvature and T is used for Torsion. 

Program: 

Program to find the curvature and the torsion of 𝑟(𝑡) = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡)𝑗̂ + 𝑓3(𝑡)𝑘̂   at given point 𝑡 = 𝑡0. 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

cross(x,y):=ev(express(x~y),diff)$ 

stp(x,y,z):=cross(x,y).z$ 

J:[i,j,k]$ 

r:[f1(t), f2(t), f3(t)]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

r3:diff(r2,t)$ 

K:norm(cross(r1,r2))/norm(r1)^3$ 

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$ 

print("Space curve is r=", r.J)$ 

print("Curvature is K=", radcan(K))$ 

print("Torsion is T=", radcan(T))$ 

print("Curvature at given point is K=", ev(K, t=t0))$ 

print("Torsion at given point is T=", ev(T, t=t0))$ 

=
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Worked Examples: 

Problem 1. Write a program to find the curvature and the torsion of the space curve 

at any point 𝑡 and at 𝑡 = 0. 

 
 

𝑟⃗ = 𝑡 𝑖̂ + 𝑡 

 

2𝑗 ̂+ 
2 

𝑡
 

3 
3𝑘̂ 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

cross(x,y):=ev(express(x~y),diff)$ 

stp(x,y,z):=cross(x,y).z$ 

J:[i,j,k]$ 

r:[t, t^2, 2/3*t^3]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

r3:diff(r2,t)$ 

K:norm(cross(r1,r2))/norm(r1)^3$ 

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$ 

print("Space curve is r=", r.J)$ 

print("Curvature is K=", radcan(K))$ 

print("Torsion is T=", radcan(T))$ 

print("Curvature at given point is K=", ev(K, t=0))$ 

print("Torsion at given point is T=", ev(T, t=0))$ 

 
2𝑘𝑡3 

𝑆𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = + 𝑗𝑡2 + 𝑖𝑡 
3 

2 
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 = 

4𝑡4 + 4𝑡2 + 1
 

2 
𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 = 

4𝑡4 + 4𝑡2 + 1
 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐾 = 2 

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = 2 

 
Problem 2. Write a program to find the curvature and the torsion of the space curve 𝑟 = 𝑡2 𝑖̂ + 𝑡3 𝑗̂ + 𝑡 𝑘̂ 

at any point 𝑡. Also, find the curvature and the torsion at t=0. 
Program:  

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

cross(x,y):=ev(express(x~y),diff)$ 
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Output: 

stp(x,y,z):=cross(x,y).z$ 

J:[i,j,k]$ 

r:[t^2, t^3, t]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

r3:diff(r2,t)$ 

K:norm(cross(r1,r2))/norm(r1)^3$ 

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$ 

print("Space curve is r=", r.J)$ 

print("Curvature is K=", radcan(K))$ 

print("Torsion is T=", radcan(T))$ 

print("Curvature at given point is K=", ev(K, t=0))$ 

print("Torsion at given point is T=", ev(T, t=0))$ 

 
𝑆𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = 𝑗𝑡3 + 𝑖𝑡2 + 𝑘𝑡 

 

2√9𝑡4 + 9𝑡2 + 1 
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 =  

 

3 

(9𝑡4 + 4𝑡2 + 1)2 

3 
𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 = 

9𝑡4 + 9𝑡2 + 1
 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐾 = 2 

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = 3 

 
Problem 3. Write a program to find the curvature and the torsion of the space curve 

𝑡 ̂ 𝜋 

Program: 

𝑟⃗ = (𝑡 − 𝑠𝑖𝑛(𝑡)) 𝑖̂ + (1 − 𝑐𝑜𝑠(𝑡)) 𝑗 ̂+ 4 𝑠𝑖𝑛 ( ) 𝑘 at any point 𝑡 and at 𝑡 = 
2 3 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

cross(x,y):=ev(express(x~y),diff)$ 

stp(x,y,z):=cross(x,y).z$ 

J:[i,j,k]$ 

r:[t-sin(t), 1-cos(t), 4*sin(t/2)]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

r3:diff(r2,t)$ 
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K:norm(cross(r1,r2))/norm(r1)^3$ 

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$ 

print("Space curve is r=", r.J)$ 

print("Curvature is K=", trigreduce(trigsimp(K)))$ 

print("Torsion is T=", trigrat(T))$ 

print("Curvature at given point is K=", ev(K, t=π/3))$ 

print("Torsion at given point is T=", ev(T, t=π/3))$ 

 
Output:  

𝑡 
𝑆𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = 𝑖(𝑡 − sin(𝑡) + 𝑗(1 − cos(𝑡) + 4𝑘 sin ( ) 

 
 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 = 

2 
 

√6 − 2 cos(𝑡) 

8 
3𝑡 𝑡 cos ( ) − 9 cos ( ) 

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 = − 2 2 
8 cos(𝑡) − 24 

 
 

√5 
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐾 = 

8
 

5 
32 

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑇 = − 
40

 

 

Problem 4. Write a program to find the curvature and the torsion of the space curve 

𝑟 = 𝑎 𝑐𝑜𝑠(𝑡)  𝑖̂ + 𝑎 𝑠𝑖𝑛(𝑡)  𝑗̂ + 𝑏𝑡 𝑘̂ at any point 𝑡. 
Program:  

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

cross(x,y):=ev(express(x~y),diff)$ 

stp(x,y,z):=cross(x,y).z$ 

J:[i,j,k]$ 

r:[a*cos(t), a*sin(t), b*t]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

r3:diff(r2,t)$ 

K:norm(cross(r1,r2))/norm(r1)^3$ 

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$ 

print("Space curve is r=", r.J)$ 
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Output: 

print("Curvature is K=", radcan(trigsimp(K)))$ 

print("Torsion is T=", trigsimp(T))$ 

 
𝑆𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = 𝑎𝑗 sin(𝑡) + 𝑎𝑖 cos(𝑡) + 𝑏𝑘𝑡 

𝑎 
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 = 

𝑏2 + 𝑎2 

𝑏 
𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 = 

𝑏2 + 𝑎2 

Problem 5. Write a program to find the curvature and the torsion of the space curve 

𝑟 = 3 𝑐𝑜𝑠(𝑡)  𝑖̂ + 3 𝑠𝑖𝑛(𝑡)  𝑗̂ + 4𝑡 𝑘̂ at any point 𝑡. 
Program: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

cross(x,y):=ev(express(x~y),diff)$ 

stp(x,y,z):=cross(x,y).z$ 

J:[i,j,k]$ 

r:[3*cos(t), 3*sin(t), 4*t]$ 

r1:diff(r,t)$ 

r2:diff(r1,t)$ 

r3:diff(r2,t)$ 

K:norm(cross(r1,r2))/norm(r1)^3$ 

T:stp(r1,r2,r3)/norm(cross(r1,r2))^2$ 

print("Space curve is r=", r.J)$ 

print("Curvature is K=", trigsimp(K))$ 

print("Torsion is T=", trigsimp(T))$ 

 
𝐺𝑖𝑣𝑒𝑛 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑟 = 3𝑗 sin(𝑡) + 3𝑖 cos(𝑡) + 4𝑘𝑡 

3 
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐾 = 

25
 

4 
𝑇𝑜𝑟𝑠𝑖𝑜𝑛 𝑖𝑠 𝑇 = 

25
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Exercise: 

Write a program to find the curvature and the torsion of a space curve 𝑟⃗ at the given point 𝑡: 

 
1. 𝑟 = 𝑎𝑡 𝑖̂ + 𝑏𝑡2 𝑗̂ + 𝑐𝑡3𝑘̂   at any point 𝑡 

 

2. 𝑟⃗ = (𝑡 − 
𝑡3 

 

 

3 
) 𝑖̂ + 𝑡2 𝑗 ̂+ ( 

𝑡3 

3 
+ 𝑡) 𝑘̂ at any point 𝑡 

 

3. 𝑟 = 𝑐𝑜𝑠𝑡 𝑖̂ + 𝑠𝑖𝑛𝑡 𝑗̂ + 𝑡2𝑘̂   at any point 𝑡 
 

4. 𝑟 = 𝑎 𝑐𝑜𝑠𝑡 𝑖̂ + 𝑎 𝑠𝑖𝑛𝑡 𝑗̂ + 𝑎 𝑐𝑜𝑡(𝛼) 𝑡 𝑘̂   at any point 𝑡 
 

5. 𝑟⃗ = 𝑎 𝑐𝑜𝑠(𝑡) 𝑖̂ + 𝑎 𝑠𝑖𝑛(𝑡) 𝑗̂ at any point 𝑡 
 

6. 𝑟⃗ = (2𝑡 + 3) 𝑖̂ + (5 − 𝑡2) 𝑗̂ at any point 𝑡 
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Experiment 4 

Program to find the Gradient and the Laplacian of a scalar function and 
Divergence and Curl of a vector function. 

Aim: To find the Gradient and the Laplacian of a scalar function and Divergence and Curl 
of a vector function using Mathematics Softwares (FOSS). 

Software: Maxima 
Keys: 

 

Key Function 
load ("vect") vect is a package of functions for vector analysis. 

load ("vect") loads this package 
express (expr) Expands differential operator nouns into expressions in terms of 

partial derivatives. express recognizes the operators grad, div, 
curl, laplacian. 

:= To define a function/expression 

diff 
When diff is present as an evflag in call to ev, all 
differentiations indicated in expr are carried out. 

grad() gradient operator 
div() divergence operator 
laplacian() Laplacian operator 
curl() curl operator 
~ The wedge product operator is denoted by the tilde ~. This is 

used to compute cross product of vectors. 
trigsimp (expr) Employs Pythagorean identities of trigonometric functions to 

simplify expressions. 

trigreduce (expr, x) Combines products and powers of trigonometric and hyperbolic 
sin’s and cos’s of x into those of multiples of x. 

[a_1,…,a_n]; To create a list [a_1,…,a_n] 
A[i] [ and ] also enclose the subscripts of a list. A[i] will be i-th 

element of list A 
sqrt() square root of argument 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 
displays expr 

radcan(expr) Simplifies expr, which can contain logs, exponentials, and 
radicals 

/ (Backward Slash) Division 
ev (expr, arg_1, …, arg_n) Evaluates the expression expr in the environment specified by 

the arguments arg_1, …, arg_n. 
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Definitions and Formulae: 

Scalar Point Function/Scalar Field: If to each point (𝑥, 𝑦, 𝑧) of a region R in space there 
corresponds a number or scalar 𝜙(𝑥, 𝑦, 𝑧), then 𝜙 is called a scalar function of position or a 
scalar point function we say that a scalar field 𝜙 has been defined in R. 

 
 

Vector Point Function/ Vector Field: If to each point (𝑥, 𝑦, 𝑧) of a region R in space there 
corresponds a vector 𝒇(𝑥, 𝑦, 𝑧), then 𝒇 is called a vector function of position or a vector point 
function we say that a scalar field 𝒇 has been defined in R. 

 
 

Gradient of a scalar field: Let 𝜙(𝑥, 𝑦, 𝑧) be defined and differentiable at each point (𝑥, 𝑦, 𝑧) in a 
certain region of space then the gradient of 𝜙, written ∇𝜙 or grad 𝜙, is a vector field defined by 

 𝜕 𝜕 
∇𝜙 = ( 𝑖̂ + 

𝜕 
𝑗̂ + 𝑘̂) 𝜙 = 

𝜕𝜙 
𝑖̂ + 

𝜕𝜙  
𝑗̂ + 

𝜕𝜙 
𝑘̂ 

𝜕𝑥 𝜕𝑦 𝜕𝑧 𝜕𝑥 𝜕𝑦 𝜕𝑧 
 

 

Laplacian of a scalar field: Let 𝜙(𝑥, 𝑦, 𝑧) be defined and differentiable at each point (𝑥, 𝑦, 𝑧) in a 
certain region of space then the Laplacian of 𝜙, written ∇2𝜙 is a scalar field defined by 

 
∇2𝜙 = 

𝜕2𝜙 
 

 

𝜕𝑥2 

𝜕2𝜙 
+ 

𝜕𝑦2 

𝜕2𝜙 
+ 

𝜕𝑧2 
 

 

Divergent of a vector field: Let 𝑓 = 𝑓1 𝑖̂ + 𝑓2 𝑗̂ + 𝑓3 𝑘̂ be defined and differentiable at each point 
(𝑥, 𝑦, 𝑧) in a certain region of space then the divergence of 𝑓⃗, written ∇ ∙ 𝑓⃗ or div 𝑓⃗, is a scalar 
field defined by 

∇ ∙ 𝑓⃗ = 
𝜕𝑓1 

+ 
𝜕𝑓2

 
𝜕𝑓3 

+ 
𝜕𝑥 𝜕𝑦 𝜕𝑧 

 

 

Curl/ rotation of a vector field: Let 𝑓 = 𝑓1 𝑖̂ + 𝑓2 𝑗̂ + 𝑓3 𝑘̂ be defined and differentiable at each 
point (𝑥, 𝑦, 𝑧) in a certain region of space then the curl or rotation of 𝑓⃗, written ∇ × 𝑓⃗ or curl 𝑓⃗ 

or rot 𝑓⃗ is a vector field defined by 

𝑖̂ 𝑗̂ 𝑘̂ 

∇ × 𝑓⃗ = | 
𝜕

 
𝜕𝑥 

𝜕 
 

 

𝜕𝑦 

𝜕 

𝜕𝑧
|
 

𝑓1 𝑓2 𝑓3 
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Program: 

Program to find the gradient and Laplacian of a scalar field Φ at a given point (𝑥0, 𝑦0, 𝑧0). 

load ("vect")$ 

J:[i,j,k]$ 

Φ:given scalar field$ 

G:ev(express(grad (Φ)),diff)$ 

L:ev(express(laplacian (Φ)),diff)$ 

print("Φ=", Φ)$ 

print("grad(Φ)=", G.J)$ 

print("laplacian(Φ)=", L)$ 

print("at given point, grad(Φ)=", ev(G,x=x0,y=y0,z=z0).J)$ 

print("at given point, laplacian(Φ)=", ev(L, x=x0,y=y0,z=z0))$ 

 
Program to find the divergence and curl of a vector field 𝑓 = 𝑓1 𝑖̂ + 𝑓2 𝑗̂ + 𝑓3 𝑘̂ at the given point 

(𝑥0, 𝑦0, 𝑧0). 
 

load ("vect")$ 

J:[i,j,k]$ 

f:[f1, f2, f3]$ 

D:ev(express(div(f)),diff)$ 

C:ev(express(curl(f)),diff)$ 

print("f=", f.J)$ 

print("div(f)=", D)$ 

print("curl(Φ)=",C.J)$ 

print("at given point, div(Φ)=", ev(D, x=x0,y=y0,z=z0))$ 

print("at given point, curl(Φ)=", ev(C, x=x0,y=y0,z=z0).J)$ 
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Worked Examples: 

 
Problem 1. Write a program to find the gradient and Laplacian of Φ = 3𝑥2𝑦 − 𝑦3𝑧2 at (1, −2, −1) 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

load ("vect")$ 

J:[i,j,k]$ 

Φ:3*x^2*y-y^3*z^2$ 

G:ev(express(grad (Φ)),diff)$ 

L:ev(express(laplacian (Φ)),diff)$ 

print("Φ=", Φ)$ 

print("grad(Φ)=", G.J)$ 

print("laplacian(Φ)=", L)$ 

print("at given point, grad(Φ)=", ev(G,x=1,y=-2,z=-1).J)$ 

print("at given point, laplacian(Φ)=", ev(L,x=1,y=-2,z=-1))$ 

 
Φ = 3𝑥2𝑦 − 𝑦3𝑧2 

𝑔𝑟𝑎𝑑(Φ) = 𝑗(3𝑥2 − 3𝑦2𝑧2) − 2𝑘𝑦3𝑧 + 6𝑖𝑥𝑦 

𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = −6𝑦𝑧2 − 2𝑦3 + 6𝑦 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑔𝑟𝑎𝑑(Φ) = −16𝑘 − 9𝑗 − 12𝑖 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = 16 

Problem 2. Write a program to find the gradient and Laplacian of Φ = 𝑥2𝑦𝑧 at (1, −2,1) 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

load ("vect")$ 

J:[i,j,k]$ 

Φ:x^2*y*z$ 

G:ev(express(grad (Φ)),diff)$ 

L:ev(express(laplacian (Φ)),diff)$ 

print("Φ=", Φ)$ 

print("grad(Φ)=", G.J)$ 

print("laplacian(Φ)=", L)$ 

print("at given point, grad(Φ)=", ev(G,x=1,y=-2,z=1).J)$ 

print("at given point, laplacian(Φ)=", ev(L,x=1,y=-2,z=1))$ 

 
Φ = 𝑥2𝑦𝑧 
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𝑔𝑟𝑎𝑑(Φ) = 2𝑖𝑥𝑦𝑧 + 𝑗𝑥2𝑧 + 𝑘𝑥2𝑦 

𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = 2𝑦𝑧 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑔𝑟𝑎𝑑(Φ) = −2𝑘 + 𝑗 − 4𝑖 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = −4 
 
 

Problem 3. Write a program to find the gradient and Laplacian of Φ = 2𝑥𝑦 + 5𝑦𝑧 + 𝑧𝑥 at (1,2,3) 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

load ("vect")$ 

J:[i,j,k]$ 

Φ:2*x*y+5*y*z+z*x$ 

G:ev(express(grad (Φ)),diff)$ 

L:ev(express(laplacian (Φ)),diff)$ 

print("Φ=", Φ)$ 

print("grad(Φ)=", G.J)$ 

print("laplacian(Φ)=", L)$ 

print("at given point, grad(Φ)=", ev(G,x=1,y=2,z=3).J)$ 

print("at given point, laplacian(Φ)=", ev(L,x=1,y=2,z=3))$ 

 
Φ = 5𝑦𝑧 + 𝑥𝑧 + 2𝑥𝑦 

𝑔𝑟𝑎𝑑(Φ) = 𝑗(5𝑧 + 2𝑥) + 𝑖(𝑧 + 2𝑦) + 𝑘(5𝑦 + 𝑥) 

𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = 0 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑔𝑟𝑎𝑑(Φ) = 11𝑘 + 17𝑗 + 7𝑖 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(Φ) = 0 

Problem 4. Write a program to find divergence and curl of 𝑓 = 𝑥2𝑧 𝑖̂ − 2𝑦3𝑧2 𝑗̂ + 𝑥𝑦2𝑧 𝑘̂ at (1, −1,1) 

Program: 

load ("vect")$ 

J:[i,j,k]$ 

f:[x^2*z,-2*y^3*z^2, x*y^2*z]$ 

D:ev(express(div(f)),diff)$ 

C:ev(express(curl(f)),diff)$ 

print("f=", f.J)$ 

print("div(f)=", D)$ 

print("curl(f)=",C.J)$ 
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Output: 

print("at given point, div(f)=", ev(D,x=1,y=-1,z=1))$ 

print("at given point, curl(f)=", ev(C,x=1,y=-1,z=1).J)$ 

 
𝑓 = −2𝑗𝑦3𝑧2 + 𝑘𝑥𝑦2𝑧 + 𝑖𝑥2𝑧 

𝑑𝑖𝑣(𝑓) = −6𝑦2𝑧2 + 2𝑥𝑧 + 𝑥𝑦2 

𝑐𝑢𝑟𝑙(𝑓) = 𝑖(4𝑦3𝑧 + 2𝑥𝑦𝑧) + 𝑗(𝑥2 − 𝑦2𝑧) 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑑𝑖𝑣(𝑓) = −3 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑐𝑢𝑟𝑙(𝑓) = −6𝑖 

Problem 5. Write a program to find divergence and curl of 𝑓 = 𝑥𝑧3 𝑖̂ − 2𝑥2𝑦𝑧 𝑗̂ + 2𝑦𝑧4 𝑘̂ at (1, −1,1) 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

load ("vect")$ 

J:[i,j,k]$ 

f:[x*z^3, -2*x^2*y*z, 2*y*z^4]$ 

D:ev(express(div(f)),diff)$ 

C:ev(express(curl(f)),diff)$ 

print("f=", f.J)$ 

print("div(f)=", D)$ 

print("curl(f)=",C.J)$ 

print("at given point, div(f)=", ev(D,x=1,y=-1,z=1))$ 

print("at given point, curl(f)=", ev(C,x=1,y=-1,z=1).J)$ 

 
𝑓 = 2𝑘𝑦𝑧4 + 𝑖𝑥𝑧3 − 2𝑗𝑥2𝑦𝑧 

𝑑𝑖𝑣(𝑓) = 8𝑦𝑧3 + 𝑧3 − 2𝑥2𝑧 

𝑐𝑢𝑟𝑙(𝑓) = 𝑖(2𝑧4 + 2𝑥2𝑦) + 3𝑗𝑥𝑧2 − 4𝑘𝑥𝑦𝑧 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑑𝑖𝑣(𝑓) = −9 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑐𝑢𝑟𝑙(𝑓) = 4𝑘 + 3𝑗 

Problem 6. Write a program to find divergence and curl of 𝑔𝑟𝑎𝑑(Φ) where Φ = 𝑥3 + 𝑦3 − 3𝑥𝑦𝑧 

Program: 

load ("vect")$ 

J:[i,j,k]$ 

Φ:x^3+y^3+z^3-3*x*y*z$ 

G:ev(express(grad (Φ)),diff)$ 

D:ev(express(div(G)),diff)$ 
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Output: 

C:ev(express(curl(G)),diff)$ 

print("Φ=", Φ)$ 

print("grad(Φ)=", G.J)$ 

print("div(grad(Φ))=", D)$ 

print("curl(grad(Φ))=",C.J)$ 
 
 

Φ = 𝑧3 − 3𝑥𝑦𝑧 + 𝑦3 + 𝑥3 

𝑔𝑟𝑎𝑑(Φ) = 𝑘(3𝑧2 − 3𝑥𝑦) + 𝑖(3𝑥2 − 3𝑦𝑧) + 𝑗(3𝑦2 − 3𝑥𝑧) 

𝑑𝑖𝑣(𝑔𝑟𝑎𝑑(Φ)) = 6𝑧 + 6𝑦 + 6𝑥 

𝑐𝑢𝑟𝑙(𝑔𝑟𝑎𝑑(Φ)) = 0 
 

Problem 7. Write a program to find 𝑑𝑖𝑣 (𝑐𝑢𝑟𝑙(𝑓⃗)) and 𝑐𝑢𝑟𝑙 (𝑐𝑢𝑟𝑙(𝑓⃗)) at (2,1,1) where 

𝑓 = 𝑥2𝑦𝑧 𝑖̂ + 𝑥𝑦𝑧2 𝑗̂ + 𝑦2𝑧 𝑘̂ 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
 

load ("vect")$ 

J:[i,j,k]$ 

f:[x^2*y*z, x*y*z^2, y^2*z]$ 

C:ev(express(curl(f)),diff)$ 

D:ev(express(div(C)),diff)$ 

CC:ev(express(curl(C)),diff)$ 

print("f=", f.J)$ 

print("curl(f)=",C.J)$ 

print("div(curl(f))=", D)$ 

print("curl(curl(f))=",CC.J)$ 

print("at given point, div(curl(f))=", ev(D,x=2,y=1,z=1))$ 

print("at given point, curl(curl(f))=", ev(CC,x=2,y=1,z=1).J)$ 

 
𝑓 = 𝑗𝑥𝑦𝑧2 + 𝑘𝑦2𝑧 + 𝑖𝑥2𝑦𝑧 

𝑐𝑢𝑟𝑙(𝑓) = 𝑘(𝑦𝑧2 − 𝑥2𝑧) + 𝑖(2𝑦𝑧 − 2𝑥𝑦𝑧) + 𝑗𝑥2𝑦 

𝑑𝑖𝑣(𝑐𝑢𝑟𝑙(𝑓)) = 0 

𝑐𝑢𝑟𝑙(𝑐𝑢𝑟𝑙(𝑓)) = 𝑖𝑧2 + 𝑘(2𝑥𝑧 − 2𝑧 + 2𝑥𝑦) + 𝑗(2𝑥𝑧 − 2𝑥𝑦 + 2𝑦) 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑑𝑖𝑣(𝑐𝑢𝑟𝑙(𝑓)) = 0 

𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑐𝑢𝑟𝑙(𝑐𝑢𝑟𝑙(𝑓)) = 6𝑘 + 2𝑗 + 𝑖 
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Exercise: 

 
I. Write a program to find the gradient and Laplacian of the following scalar fields Φ at 

the given point: 

 
1. Φ = 𝑥2𝑦2𝑧4 at (3, 1, −2) 

 
2. Φ = 𝑥3 + 𝑦3 + 3𝑥𝑦𝑧 at (1, 2, −1) 

 
3. Φ = 𝑥2𝑦𝑧 + 4𝑥𝑧2 at (1, − 2, −1) 

 
4. Φ = 𝑥𝑦2 + 𝑦𝑧3 at (2, − 1, 1) 

 

II. Write a program to find the divergence and curl of the following vector fields 𝑓⃗ at the 

given point: 

 
1. 𝑓 = (𝑥 + 𝑦 + 1)𝑖̂ + 𝑗̂ − (𝑥 + 𝑦)𝑘̂ at (2,1, −1) 

 

2. 𝑓 = 𝑥2𝑦 𝑖̂ + 𝑦𝑧3𝑗̂ − 𝑧𝑥3𝑘̂ at  (1,1,1) 
 

3. 𝑓⃗ = 𝑔𝑟𝑎𝑑(Φ) where Φ = 2𝑥3𝑦2𝑧4 at (−1, 2, −3) 
 

4. 𝑓⃗ = 𝑔𝑟𝑎𝑑(Φ) where Φ = 𝑥4 − 6𝑥2𝑦2 + 𝑦4 at (1, 2,3) 

 
III. Write a program to find the 𝑑𝑖𝑣 (𝑐𝑢𝑟𝑙(𝑓⃗)) and 𝑐𝑢𝑟𝑙 (𝑐𝑢𝑟𝑙(𝑓⃗)) of the following 

vector fields 𝑓⃗ at the given point: 

 
1. 𝑓 = 2𝑥2𝑧 𝑖̂ − 𝑥𝑦2𝑧 𝑗̂ + 3𝑦𝑧2 𝑘̂ at (1,1,2) 

 

2. 𝑓 = 𝑥2𝑦 𝑖̂ + 𝑦2𝑧 𝑗̂ + 𝑧2𝑥 𝑘̂ at  (−2,1,1) 
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Experiment 5 
Program to demonstrate the physical interpretation of 

Gradient, Divergence and Curl. 

Aim: To demonstrate physical interpretations of Gradient, Divergence and Curl like 
directional derivative, unit normal, solenoidal, irrotational using Mathematics 
Softwares (FOSS). 

Software: Maxima 
Keys: 

 

Key Function 
load ("vect") vect is a package of functions for vector analysis. 

load ("vect") loads this package 
express (expr) Expands differential operator nouns into expressions in terms of 

partial derivatives. express recognizes the operators grad, div, 
curl, laplacian. 

:= To define a function/expression 

diff 
When diff is present as an evflag in call to ev, all differentiations 
indicated in expr are carried out. 

grad() gradient operator 
div() divergence operator 
laplacian() Laplacian operator 
curl() curl operator 
~ The wedge product operator is denoted by the tilde ~. This is 

used to compute cross product of vectors. 
trigsimp (expr) Employs Pythagorean identities of trigonometric functions to simplify 

expressions. 

trigreduce (expr, x) Combines products and powers of trigonometric and hyperbolic 
sin’s and cos’s of x into those of multiples of x. 

* (asterik) Commutative Multiplication 
. (dot) Noncommutative multiplication and scalar product 

coeff (expr, x) 
Returns the coefficient of x in expr, where expr is a polynomial 
or a monomial term in x. 

apply(‘matrix, nested lists) Converts nested lists of same length into a matrix 
[a_1,…,a_n]; To create a list [a_1,…,a_n] 
A[i] [ and ] also enclose the subscripts of a list. A[i] will be i-th 

element of list A 
sqrt() square root of argument 

diff (expr, x) 
Returns the first partial derivative of expr with respect to the 
variable x. 

/ (Backward Slash) Division 
acos() arc cos or cos-1 function 
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Definitions and Formulae: 

Level Surfaces: If Φ(𝑥, 𝑦, 𝑧) is a scalar point function, then Φ(𝑥, 𝑦, 𝑧) = 𝐶, where 𝐶 is a constant 
is called a level surface of the function Φ(𝑥, 𝑦, 𝑧). At every point on the level surface, the 
function Φ(𝑥, 𝑦, 𝑧) takes a constant value 𝐶. 

Physical Interpretation of Gradient: 

a) Directional Derivative: The component of 𝑔𝑟𝑎𝑑(Φ) of a scalar field Φ in the direction of 
𝑎⃗ is given by 𝑔𝑟𝑎𝑑(Φ) ∙ 𝑎̂ and is called the directional derivative of Φ in the direction of 𝑎⃗. 
Here 𝑎̂ is the unit vector in the direction of 𝑎⃗. Physically, this is the rate of change of Φ at 
(𝑥, 𝑦, 𝑧) in the direction of 𝑎⃗. 

b) Unit normal: The 𝑔𝑟𝑎𝑑(Φ) is a vector normal to the level surface Φ = 𝐶 and 𝑛̂  =  
𝑔𝑟𝑎𝑑(Φ)

 
|𝑔𝑟𝑎𝑑(Φ) | 

is the unit normal vector to the surface Φ = 𝐶 at any point (𝑥, 𝑦, 𝑧). 

c) Angle between surfaces: Angle between two surfaces is the angle between their normals at 
the common point. At the common point (x0, y0, z0), angle between Φ = 𝐶1 and ψ = 𝐶2 is 
given by 𝜃 = 𝑐𝑜𝑠−1 (

 𝑔𝑟𝑎𝑑(Φ) ∙𝑔𝑟𝑎𝑑(ψ) 
) evaluated at (x0, y0, z0). 

|𝑔𝑟𝑎𝑑(Φ)|∙|𝑔𝑟𝑎𝑑(ψ)| 
 

Physical Interpretation of Divergent: If 𝑓⃗ represents the velocity of a fluid then 𝑑𝑖𝑣(𝑓⃗) represents 
the rate at which the fluid is decreasing per unit volume. A vector point function 𝑓⃗ is said to 
be solenoidal if 𝑑𝑖𝑣(𝑓⃗) = 0. 

Physical Interpretation of Curl: If 𝑓⃗ represents the velocity of a body rotating about a fixed point 
then 𝑐𝑢𝑟𝑙(𝑓⃗) represents twice the angular velocity. A vector point function 𝑓⃗ is said to be 
irrotational if 𝑐𝑢𝑟𝑙(𝑓⃗) = 0. 

Program: 
Program to find the directional derivative of Φ in the direction of 𝑎⃗  = 𝑎1 𝑖̂ + 𝑎2 𝑗̂ + 𝑎3 𝑘̂ at the 

given point (𝑥0, 𝑦0, 𝑧0). 
load ("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

Φ:given scalar field$ 

a:[a1, a2, a3]$ 

G:ev(express(grad (Φ)),diff)$ 

DD:G.a/norm(a)$ 

print("Φ=", Φ)$ 

print("a=", a.J)$ 

print("grad(Φ)=", G.J)$ 

print("Directional Derivative of Φ=", radcan(DD))$ 

print("at the given point, Directional Derivative of Φ=", ev(DD,x=x0,y=y0,z=z0))$ 
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Program to find the unit normal to the surface Φ = C at the given point (𝑥0, 𝑦0, 𝑧0). 

load ("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

Φ:given scalar field (i.e., LHS of Φ=C)$ 

G:ev(express(grad (Φ)),diff)$ 

n:radcan(G/norm(G))$ 

print("Φ=", Φ)$ 

print("grad(Φ)=", G.J)$ 

print("Unit Normal to Φ=", expand(n.J))$ 

print("at the given point, Unit Normal to Φ=", ev(n, x=x0,y=y0,z=z0).J)$ 
 
 

Program to find the angle between surfaces Φ = C1 and Ψ=C2 at the common point (𝑥0, 𝑦0, 𝑧0). 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

Φ: given scalar field (i.e., LHS of Φ=C1)$ 

Ψ: given scalar field (i.e., LHS of Ψ=C2)$ 

G1:ev(express(grad (Φ)),diff)$ 

G2:ev(express(grad (Ψ)),diff)$ 

θ:acos(G1.G2/(norm(G1)*norm(G2)))$ 

print("Φ=", Φ)$ 

print("Ψ=", Ψ)$ 

print("Angle between Φ and Ψ is θ=", ev(θ, x=x0,y=y0,z=z0))$ 
 
 

Program to test whether given vector field 𝑓 = 𝑓1 𝑖̂ + 𝑓2 𝑗̂ + 𝑓3 𝑘̂ is solenoidal/irrotational or not. 

load ("vect")$ 

J:[i,j,k]$ 

f:[f1,f2, f3]$ 

D:ev(express(div(f)),diff)$ 

C:ev(express(curl(f)),diff)$ 

print("f=", f.J)$ 

print("div(f)=", D)$ 

print("curl(f)=",C.J)$ 
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if D=0 then print("Given Vector field is solenoidal") 

else print("Given Vector field is not solenoidal")$ 

if C.J=0 then print("Given Vector field is irrotational") 

else print("Given Vector field is not irrotational")$ 

 

Worked Examples: 
 

Problem 1. Write a program to find the directional derivative of Φ = 𝑥2𝑦𝑧 + 4𝑥𝑧2 in the direction 

of  𝑎⃗  = 2 𝑖̂ − 𝑗̂ − 2𝑘̂ at the given point (1, −2, −1). 

Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 
load ("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

Φ:x^2*y*z+4*x*z^2$ 

a:[2,-1,-2]$ 

G:ev(express(grad (Φ)),diff)$ 

DD:G.a/norm(a)$ 

print("Φ=", Φ)$ 

print("a=", a.J)$ 

print("grad(Φ)=", G.J)$ 

print("Directional Derivative of Φ=", radcan(DD))$ 

print("at the given point, Directional Derivative of Φ=", ev(DD,x=1,y=-2,z=-1))$ 
 
 

Φ = 4𝑥𝑧2 + 𝑥2𝑦𝑧 

𝑎 = −2𝑘 − 𝑗 + 2𝑖 

𝑔𝑟𝑎𝑑(Φ) = 𝑖(4𝑧2 + 2𝑥𝑦𝑧) + 𝑘(8𝑥𝑧 + 𝑥2𝑦) + 𝑗𝑥2𝑧 

8𝑧2 + (4𝑥𝑦 − 𝑥2 − 16𝑥)𝑧 − 2𝑥2𝑦 
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 Φ = 

3
 

37 
𝑎𝑡 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 Φ = 

3
 

Problem 2. Write a program to find the directional derivative of Φ = 2𝑥𝑦 + 5𝑦𝑧 + 𝑧𝑥 in the 

direction of  𝑎⃗  = 3 𝑖̂ − 5𝑗̂ + 4𝑘̂ at the given point (1,2,3). 
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Program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 

load ("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

Φ:2*x*y+5*y*z+z*x$ 

a:[3,-5,4]$ 

G:ev(express(grad (Φ)),diff)$ 

DD:G.a/norm(a)$ 

print("Φ=", Φ)$ 

print("a=", a.J)$ 

print("grad(Φ)=", G.J)$ 

print("Directional Derivative of Φ=", radcan(DD))$ 

print("at the given point, Directional Derivative of Φ=", ev(DD,x=1,y=2,z=3))$ 
 
 

Φ = 5𝑦𝑧 + 𝑥𝑧 + 2𝑥𝑦 

𝑎 = 4𝑘 − 5𝑗 + 3𝑖 

𝑔𝑟𝑎𝑑(Φ) = 𝑗(5𝑧 + 2𝑥) + 𝑖(𝑧 + 2𝑦) + 𝑘(5𝑦 + 𝑥) 

22𝑧 − 26𝑦 + 6𝑥 
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 Φ = −  

 

5√2 
3 

𝑎𝑡 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 Φ = −22 

 

 

Problem 3. Write a program to find the unit normal to the surface 𝑥𝑦3𝑧2 = 4 at (−1, −1,2). 

Program: 

load ("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

J:[i,j,k]$ 

Φ:x*y^3*z^2$ 

G:ev(express(grad (Φ)),diff)$ 

n:radcan(G/norm(G))$ 

print("Φ=", Φ)$ 

print("grad(Φ)=", G.J)$ 

print("Unit Normal of Φ=", expand(n.J))$ 

print("at the given point, Unit Normal of Φ=", ev(n,x=-1,y=-1,z=2).J)$ 
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Output:  

Φ = 𝑥𝑦3𝑧2 

𝑔𝑟𝑎𝑑(Φ) = 𝑖𝑦3𝑧2 + 3𝑗𝑥𝑦2𝑧2 + 2𝑘𝑥𝑦3𝑧 

𝑖𝑦𝑧 

 
 
 
 

3𝑗𝑥𝑧 

 
 
 
 

2𝑘𝑥𝑦 
𝑈𝑛𝑖𝑡 𝑁𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 Φ =   +   +    

√𝑦2𝑧2 + 9𝑥2𝑧2 + 4𝑥2𝑦2 √𝑦2𝑧2 + 9𝑥2𝑧2 + 4𝑥2𝑦2 √𝑦2𝑧2 + 9𝑥2𝑧2 + 4𝑥2𝑦2 

𝑘 3𝑗 𝑖 
𝑎𝑡 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡, 𝑈𝑛𝑖𝑡 𝑁𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 Φ =   −   −    

√11 √11 √11 

 

Problem 4. Write a program to find the angle between surfaces 𝑥2 − 2𝑦2 + 4𝑧2 = 3 and 𝑥𝑦𝑧2 = 1 

at the common point (1,1, −1). 
Program: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 

 

load("vect")$ 

norm(x):=sqrt(x[1]^2+x[2]^2+x[3]^2)$ 

Φ:x^2-2*y^2+4*z^2$ 

Ψ:x*y*z^2$ 

G1:ev(express(grad (Φ)),diff)$ 

G2:ev(express(grad (Ψ)),diff)$ 

θ:acos(G1.G2/(norm(G1)*norm(G2)))$ 

print("Φ=", Φ)$ 

print("Ψ=", Ψ)$ 

print("Angle between Φ and Ψ is θ=", ev(θ,x=1, y=1, z=-1))$ 
 
 

Φ = 4𝑧2 − 2𝑦2 + 𝑥2 

Ψ = 𝑥𝑦𝑧2 

7 
𝐴𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 Φ 𝑎𝑛𝑑 Ψ 𝑖𝑠 𝜃 = acos (   ) 

√6√21 
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Problem 5. Write a program to test whether 𝑓 = (𝑥 + 2𝑦 + 4𝑧) 𝑖̂ + (2𝑥 − 3𝑦 − 𝑧) 𝑗̂ + (4𝑥 − 𝑦 + 2𝑧)𝑘̂ 

is solenoidal/irrotational or not 
Program: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output: 

 

load ("vect")$ 

J:[i,j,k]$ 

f:[x+2*y+4*z,2*x-3*y-z, 4*x-y+2*z]$ 

D:ev(express(div(f)),diff)$ 

C:ev(express(curl(f)),diff)$ 

print("f=", f.J)$ 

print("div(f)=", D)$ 

print("curl(f)=",C.J)$ 

if D=0 then print("Given Vector field is solenoidal") 

else print("Given Vector field is not solenoidal")$ 

if C.J=0 then print("Given Vector field is irrotational") 

else print("Given Vector field is not irrotational")$ 

 
𝑓 = 𝑖(4𝑧 + 2𝑦 + 𝑥) + 𝑘(2𝑧 − 𝑦 + 4𝑥) + 𝑗(−𝑧 − 3𝑦 + 2𝑥) 

𝑑𝑖𝑣(𝑓) = 0 

𝑐𝑢𝑟𝑙(𝑓) = 0 

𝐺𝑖𝑣𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙 

𝐺𝑖𝑣𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 

Problem 6. Write a program to test whether 𝑓⃗ = (𝑥2 + 𝑥𝑦2) 𝑖̂ + (𝑦2 + 𝑥2𝑦) 𝑗̂ is solenoidal/irrotational or not 
Program: 

load ("vect")$ 

J:[i,j,k]$ 

f:[x^2+x*y^2,y^2+x^2*y, 0]$ 

D:ev(express(div(f)),diff)$ 

C:ev(express(curl(f)),diff)$ 

print("f=", f.J)$ 

print("div(f)=", D)$ 

print("curl(f)=",C.J)$ 

if D=0 then print("Given Vector field is solenoidal") 

else print("Given Vector field is not solenoidal")$ 

if C.J=0 then print("Given Vector field is irrotational") 

else print("Given Vector field is not irrotational")$ 
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Output:  

𝑓 = 𝑖(𝑥𝑦2 + 𝑥2) + 𝑗(𝑦2 + 𝑥2𝑦) 

𝑑𝑖𝑣(𝑓) = 𝑦2 + 2𝑦 + 𝑥2 + 2𝑥 

𝑐𝑢𝑟𝑙(𝑓) = 0 

𝐺𝑖𝑣𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙 

𝐺𝑖𝑣𝑒𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 
 

 

Exercise: 

I. Write a program to find the directional derivative of Φ in the direction of 𝑎⃗ at the given 

point (𝑥0, 𝑦0, 𝑧0). 

1. Φ = 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦, 𝑎⃗ = 3𝑖 + 4𝑗 + 5𝑘 at (1, 2, 3) (Ans: 23√2) 
5 

 

2. Φ = 𝑥3 + 𝑦3 + 𝑧3, 𝑎⃗ = 𝑖 + 2𝑗 + 𝑘 at (1, −1, 2) (Ans: 21 ) 
√6 

 
 

II. Write a program to find the unit normal to the surface Φ = C at the given point (𝑥0, 𝑦0, 𝑧0). 

1. 𝑥3 + 𝑦3 + 3𝑥𝑦𝑧 = 3 at (1, 2, −1) (Ans:   2𝑘 
√14 

+ 
3𝑗 

√14 
−   

𝑖   
) 

√14 

2. 𝑥2𝑦2𝑧2 = 4 at (−1, − 1, 2) ) (Ans: 𝑘 − 
2𝑗 

− 
2𝑖

) 
3 3 3 

 
 

III. Write a program to find the angle between surfaces Φ = C1 and Ψ=C2 at the common 

point (𝑥0, 𝑦0, 𝑧0). 

1. 𝑥2 + 𝑦2 + 𝑧2 = 9 and 𝑥2 + 𝑦2 − 𝑧 = 3 at ( 2, −1, 2) (Ans: acos (   
8   

)) 
3√21 

2. 𝑥 log(𝑧) − 𝑦2 = −1 and 𝑥2𝑦 + 𝑧 = 2 at ( 1, 1, 1) (Ans: 𝜋 − acos (   
1   

)) 
√5√6 

 
 

IV. Write a program to test whether given vector field ⃗f is solenoidal/irrotational or not. 

1. 𝑓 = (3𝑥 + 3𝑦 + 4𝑧)𝑖̂ + (𝑥 − 2𝑦 + 3𝑧) 𝑗̂ + (3𝑥 + 2𝑦 − 𝑧) 𝑘̂ 

2. 𝑓 = (𝑥 + 3𝑦)𝑖̂ + (𝑦 − 3𝑧) 𝑗̂ + (𝑥 − 2𝑧) 𝑘̂ 

3. 𝑓 = (sin(y) + 𝑧)𝑖̂ + (𝑥 𝑐𝑜𝑠(𝑦) − 𝑧) 𝑗̂ + (𝑥 − 𝑦) 𝑘̂ 

4. 𝑓 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ 

5. 𝑓 = 3𝑦4𝑧2 𝑖̂ + 4𝑥3𝑧2 𝑗̂ − 3𝑥2𝑦2 𝑘̂ 
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Experiment 6 
Program 6: Program to evaluate vector line integral   

Aim: To find ∫𝑐𝐹⃗. 𝑑𝑟 which is work done in moving a particle in a force field where 𝐹⃗ = 2𝑥𝑦𝑖 − 3𝑥𝑗 − 5𝑧𝑘, 𝑐 

is the curve  𝑥 = 𝑡, 𝑦 =t2+1 ,   𝑧 = 2t2      from 𝑡 = 0 to 𝑡 = 1.  

Software used: Maxima.  

  

Definition:   

Line integral: Let 𝐹⃗ = 𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘   be a vector point function in a region 𝑅 and 𝑐 is a regular curve from 

the point A to point B the line integral of 𝐹⃗ is defined as   

  

       

1. The line integral (1) gives the total work done by force 𝐹⃗ along A to B.  

2. If 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡) are parametric equations of curve 𝑐 ,then  

  

3. If 𝑐 is a closed curve then ∮ 𝐹⃗ ∙ 𝑑𝑟  is called the circulation of 𝐹⃗ around  

𝑐.   If ∮ 𝐹⃗ ∙ 𝑑𝑟 = 0   is irrotational vector  

  

Conclusion:   

Work done in moving a particle in a force field is   

  

Find the work done in moving a particle in a force field given by 𝐹⃗ = 2𝑥𝑦𝑖 − 3𝑥𝑗 − 5𝑧𝑘 along the curve 𝑐 

given by  𝑥 = 𝑡, 𝑦 =t2+1 ,   𝑧 = 2t2 from 𝑡 = 0 to 𝑡 = 1  

PROGRAM:  
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OUTPUT:  
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Experiment 7 
 

Program 7: Program to evaluate the surface integral.  

Aim: To evaluate  ∬𝑆 𝐹⃗ ∙ 𝑛 ̂𝑑𝑠  where 𝑆 is the surface 2𝑥 + 2𝑦 + 𝑧 = 6 and  𝐹⃗ = 𝑥𝑦𝑖 − 𝑥2𝑗 + (𝑥 + 𝑧)𝑘.  

Software used: maxima  

  

Definition:  

Surface integral:   

An integral which is evaluated over the surface S is called the surface integral.  

Let 𝐹⃗ = 𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘  be a vector point function and S is any surface in 3D-space then the surface 

integral is defined as  ∬𝑆 𝐹⃗ ∙ 𝑛 ̂𝑑𝑠 where 𝑛 ̂is the unit  

normal vector to surface   

1. If 𝑅 is the projection of surface 𝑆 on 𝑥𝑦-plane then  

   where 𝑑𝑠 = 𝑑𝑥𝑑𝑦  

2. If  𝑅1  is the projection of 𝑆 on 𝑦𝑧- plane then   

  

3. If 𝑅2 is the projection of 𝑆 on 𝑥𝑧-plane then   

  

   
Conclusion:     

      
  

 Evaluate ∬𝑆 𝐹⃗ ∙ 𝑛 ̂𝑑𝑠  where 𝑆 is the surface of the cylinder 2𝑥 + 2𝑦 + 𝑧 = 6 included in the first octant and 𝐹⃗ = 𝑥𝑦𝑖 

− 𝑥2𝑗 + (𝑥 + 𝑧)𝑘.  
PROGRAM:  
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 OUTPUT:  
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𝑣 

 Experiment 8 
 

Program 8: Program to evaluate the volume integral.  
Aim: To evaluate  ∭𝑣𝛻 ⋅ 𝐹⃗ 𝑑𝑉  where 𝐹⃗ = (2𝑟2 − 3𝑧)𝑖 − 2𝑥𝑦𝑗 − 4𝑥𝑘 where 𝑉  is the closed region bounded by 𝑥 = 0 𝑦 

= 0 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4   

Software used: Maxima  
  
Definition:  

Volume integral:   

Let 𝐹⃗ = 𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘    be a vector point and 𝑉 be the volume. The volume integration of 𝐹⃗ over V 

is defined as   

            ∭𝑉 𝐹⃗𝑑𝑉 = ∭𝑉(𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘     )𝑑𝑥𝑑𝑦𝑑𝑧  

The volume integral is also given by∭𝑉 𝑑𝑖𝑣 𝐹⃗ 𝑑𝑉  

  

Conclusion:    
  

If 𝐹⃗ = (2𝑟2 − 3𝑧)𝑖 − 2𝑥𝑦𝑗 − 4𝑥𝑘 evaluate  ∭𝑣𝛻 ⋅ 𝐹⃗ 𝑑𝑉  where 𝑉 is the closed region bounded by  the planes 

𝑥 = 0 𝑦 = 0 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4   

PROGRAM:  
 

If 𝐹⃗ = (2𝑟2 − 3𝑧)𝑖 − 2𝑥𝑦𝑗 − 4𝑥𝑘 evaluate ∭ 𝛻 ⋅ 𝐹⃗ 𝑑𝑉 where 𝑉 is the closed region bounded by the planes 𝑥 
= 0 𝑦 = 0 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4 
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OUTPUT: 
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Experiment 10 
Program 9: Program to verify Green’s theorem . 

Aim: To verify Greens theorem for ∮(𝑥𝑦 + 𝑦2)𝑑𝑥 + 𝑥2𝑑𝑦 where 𝑐 is the closed curve bounded by 𝑦 = 

𝑥 and 𝑦 = 𝑥2. 

Software used: Maxima 
 

Green’s theorem in the plane: 
Statement: If 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) be two continuous function having continuous partial derivatives in a region 𝑅 of the 𝑥𝑦-
plane bounded by a simply closed curve 𝑐 then 
 

ර 𝑃𝑑𝑥 + 𝑄𝑑𝑦
஼

= ඵ ൬
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
൰

ோ

𝑑𝑥𝑑𝑦 

 

1. Green’s theorem givens a relation between the plane surface integral and the line integral. 

2. The Green’s theorem in vector form is given by 

∮ 𝐹⃗ ∙ 𝑑𝑟 = ∬(∇ × 𝐹⃗ ) ∙ 𝑘 𝑑𝑠 
𝑐 𝑅 

3. Let 𝐹⃗ = 𝑃𝑖 + 𝑄𝑗 be irrotational in the region 𝑅 of the 𝑥𝑦-plane then 

𝐶𝑢𝑟𝑙 𝐹 = ∇ × 𝐹⃗ = 0 ⟹ ∮𝐶 𝐹⃗
 ∙ 𝑑𝑟 = 0 

⟹The work done by the force 𝐹⃗ in displaying a particle around the closed curve 𝐶 is zero. 

⟹ 𝐹⃗ is conservative. 

4. Suppose 𝐹⃗ is conservative force in the 𝑥𝑦-plane then there exists a scalar point function 𝜙 such 

that 𝐹⃗ =∇𝜙 

⟹ ∇ × 𝐹⃗ = ∇ × ∇𝜙 = 0 

⟹ ∮𝐶 𝐹⃗
 ∙ 𝑑𝑟 = 0 

 

Conversely if ∮𝐶 𝐹⃗
 ∙ 𝑑𝑟 = 0 then 𝐹⃗ is conservative . 

Thus in the 𝑥𝑦-plane the circulation of 𝐹⃗ around a closed path vanishes if and only if 𝐹⃗ is a 

conservative force. 

Conclusion: Green’s theorem is verified a given plane and a closed curve. 

Verify Greens theorem for ∮(𝑥𝑦 + 𝑦2)𝑑𝑥 + 𝑥2𝑑𝑦 where 𝑐 is the closed curve bounded by 𝑦 = 𝑥 and 𝑦 = 

𝑥2. 
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OUTPUT:  
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Experiment 10 
Program10: Program to find equations of sphere, cone and cylinder  
Aim: Program to find equations of sphere, cone and cylinder.  

Software used: Maxima  

  
Sphere:  

 A sphere is the locus of a point which moves so that its distance from a fixed point always remains 

constant.  The fixed point is called the center of the sphere and the constant distance is called radius of the 

sphere.   

Equation of the sphere whose center is (𝑎, 𝑏, 𝑐) and radius 𝑟 is given by  

 (𝑥 − 𝑎)2 + (𝑦 − 6)2 + (𝑧 − 𝑐)2 = 𝑟2  

Equations of the sphere whose center is origin and radius 𝑟 is given by  

 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2  

The equation 𝑥2 + 𝑦2 + 𝑧2 + 2𝑢𝑥 + 2𝑣𝑦 + 2𝑤𝑧 + 𝑑 = 0 represents a sphere whose center is (−𝑢, −𝑣, 

−𝑤) and    radius = √𝑢2 + 𝑣2 + 𝑤2 − 𝑑  

 Condition for a sphere:   
The given equation represents a sphere if   

1. It is a second degree equation in 𝑥, 𝑦, 𝑧   

2. Co-efficient  𝑥2= co-efficient of  𝑦2= co-efficient of  𝑧2  

3. It does not contain the terms involving the products 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥  

Cone:   

A cone is a solid whose surface is generated by a line passing through a fixed point and a fixed plane 

curve not containing the point, consisting of two equal sections joined at a point.  The fixed point is called the 

vertex of the cone, the moving line in any position is called the generator and if the generator cuts a fixed curve 

then the curve is called the guiding curve.  

The equation of the cone with vertex at origin is a homogeneous equation of second degree in 𝑥, 𝑦, 𝑧 

which is  𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2𝑡𝑦𝑧 + 2𝑔𝑧𝑥 + 2ℎ𝑥𝑦 = 0.   

A right circular cone is a surface generated by a straight line which passes through the fixed point.  The 

fixed point is called the vertex the constant angle is called the semi-vertical angle and the fixed line through the 

fixed point is called axis of the cone.  

The equation of right circular cone whose vertex as origin, axis-𝑜𝑧 and semi-vertical angle α is given by  

𝑥2 + 𝑦2 = 𝑧2 tan2 𝛼  
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Cylinder:   

A. A cylinder is the surface generated by a straight line which is parallel to a fixed straight line and 

satisfies one more condition that it may intersect a fixed curve or touch a given surface.  

B. A cylinder whose equation is second degree in 𝑥, 𝑦, 𝑧 is called a quadratic cylinder.  

C. A right circular cylinder is the surface generated by a straight line which is parallel to a fixed line is at a 

constant distance from it the fixed line is called the axis and the constant distance is called radius of the 

cylinder.  

The equation of the right circular cylinder whose axis is z-axis and radius 𝑎 is given by  

       (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑎2   

Conclusion:  

1. The equation of sphere with center at (1,2, −3) and radius =4 is given by                        

  𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 − 4𝑦 + 6𝑧 + 14 = 16  

2. The equation of the cone with center at (2, −3,5) and semi-vertical angle  

30° is given by    

3. The equation of the cylinder with center at (2,3) and radius =2 is given by  

𝑥2 + 𝑦2 − 4𝑥 − 6𝑦 + 13 = 4   

  

Find the equation of  
1. Sphere with center at (1,2, −3) and radius =4  

2. Cone with center at (2, −3,5) and semi-vertical angle 30°  

3. Cylinder with center at (2,3) and radius =2  

PROGRAM:  
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OUTPUT:  
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Experiment 11 
Program11: Program to find distance between a straight line and a plane.   

Aim: To find the distance between the line  and the plane  

3𝑥 − 2𝑦 + 𝑧 = 2   

Software used: Maxima  

  

Distance between straight line and a plane:  

The distance between a straight line and plane can be found by finding distance between a point 𝑃 on the 

straight line and the plane provided the line and plane are parallel.  Consider a straight line       

                                                

Where (𝑥1, 𝑦1, 𝑧1) are point on the line and 𝑙, 𝑚, 𝑛 are direction vectors  

of the line  and the plane  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0  ------------(2) where 𝑎, 𝑏, 𝑐 are normal vector of the plane.  

If (𝑙𝑖 + 𝑚𝑗 + 𝑛𝑘) ∙ (𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘) = 0 then the line and plane are parallel   

The distance can be found by using   

  

Conclusion: The line and plane are parallel and distance between line and plane is   

   

Find the distance between the line  and the plane  3𝑥 − 2𝑦 + 𝑧 = 2   

PROGRAM:  
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OUTPUT:  
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Experiment 12 
Program12: Program to construct and plot some standard surface.   

Aim: To construct and plot ellipsoid, elliptic paraboloid and hyperbolic paraboloid.  

Software used: Maxima  

  

Standard surfaces:  

1. Ellipsoid: Ellipsoid is a closed surface of which all plane cross sections are either ellipse or circle. An 

ellipsoid is symmetrical about three mutually perpendicular axes that intersect at the center.  

If 𝑎, 𝑏, 𝑐 are the principle semi-axes the general equation is  
 2 2 2 

    

If 𝑎 = 𝑏 = 𝑐 then the surface is a sphere and the intersection with any plane passing through it is a circle  

• It is symmetrical about each of the co-ordinate planes as only even powers of 𝑥, 𝑦, 𝑧 occur in its 

equation.  

• It meets 𝑥-axis at 𝐴(𝑎, 0,0) , 𝐴′(−𝑎, 0,0);  

𝑦-axis at B(0, 𝑏, 0) , 𝐵′(0, −𝑏, 0);  

𝑧-axis at 𝐶(0,0, 𝑐) , 𝐶′(0,0, −𝑐);  

• Its section by the co-ordinate planes are ellipses.  𝑖. 𝑒., the section by 𝑦𝑧  

plane (𝑥 = 0) is the ellipse   

2. Elliptic paraboloid: Elliptic paraboloid is a quadric surface whose vertical cross sections are parabolas 

while horizontal cross sections are ellipses.  

 2 2 
The general form of the equation is     
where 𝑎, 𝑏 are constants that dictate the level of curvature in the 𝑥𝑦 and 𝑦𝑧 planes respectively.  If 𝑐 is 

positive then the shape is in positive direction and if it is negative then shape is on negative direction.  

• It is symmetrical about 𝑦𝑧 plane and 𝑧𝑥 plane as only even powers of 𝑥 and 𝑦 occur in the equation.  

• It meets the axis at the origin only and touches the 𝑥𝑦 plane.  
2 

• Its the section by 𝑦𝑧 plane (𝑥 = 0) is a parabola   
2 

Its the section by 𝑧𝑥 plane (𝑦 = 0) is a parabola   

Its the section by 𝑥𝑦 plane (𝑧 = 0) is the point ellipse   
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3. Hyperbolic paraboloid: A hyperbolic paraboloid is a doubly ruled surface shape the general form is 

 .  In this position the hyperbolic  

paraboloid opens downwards along 𝑥-axis and upwards along the 𝑦-axis.  

• It is symmetrical about 𝑦𝑧 plane and 𝑧𝑥 plane as only even powers of 𝑥 and 𝑦 occur in the equation.  

• It meets the axis at the origin only and touches the 𝑥𝑦 plane.  

• Its the section by 𝑦𝑧 plane (𝑥 = 0) is a parabola  Its the section by 𝑧𝑥 plane (𝑦 = 0) is 

a parabola   

Its the section by 𝑥𝑦 plane (𝑧 = 0) is the part of lines   

   
  
Conclusion:  

1. Equation of ellipsoid with 𝑎 = 2, 𝑏 = 1, 𝑐 = 3 is  

  

2. Equation of elliptic paraboloid with 𝑎 = 2, 𝑏 = 3, 𝑐 = 5 is   

  

3. Equation of hyperbolic paraboloid with 𝑎 = 2, 𝑏 = 3, 𝑐 = 1 is  

  

Find the equation of  
1. Ellipsiod with 𝑎 = 2, 𝑏 = 1, 𝑐 = 3  

2. Elliptic paraboloid with 𝑎 = 2, 𝑏 = 3, 𝑐 = 5  

3. Hyperbolic paraboloid with 𝑎 = 2, 𝑏 = 3, 𝑐 = 1  

PROGRAM:  
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OUTPUT:  
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List of Programs  

For Sixth Semester DSC 1 Mathematics 

(Practicals on Linear Algebra) 
 

(4 Hours per Week and 56 hours per Semester) 

1. Program on linear combination of vectors. 

2. Program to verify linear dependence and independence. 

3. Program to find basis and dimension of the subspaces. 

4. Program to verify if a function is linear transformation or not. 

5. Program to find the matrix of linear transformation. 

6. Program to find the Eigenvalues and Eigenvectors of a given linear transformation. 

7. Program on Rank – Nullity theorem. 

8. Program to verify if the given linear transformation is singular/non-singular. 

9. Program to find the minimal polynomial of given transformation.  

10. Program to find the algebraic multiplicity of the Eigenvalues of the given 

linear transformation. 

11. Program on diagonalization. 
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Program 1 

Program on linear combination of vectors. 
  

Aim: To check whether given vector is in the Linear Span of given subset of vectors of a 

vector space and expressing it as a linear combination of those vectors using 

Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols

Key Function 

. (dot) 

The operator . represents noncommutative multiplication 

and scalar product. It is used for usual multiplication of 

matrices. 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

linsolve (A,B) 

Solves the list of simultaneous linear equations for the list 

A of variables in list B. The expressions must each be 

polynomials in the variables and may be equations. 

 %r,   %r1,   %r2,  etc 

These are system generated symbols for arbitrary 

parameters for solution of under-determined system of 

equations 

setify (A) Constructs a set from the elements of the list A. 

' The single quote operator ' prevents evaluation. 

load("ratpow") 

loads the package ratpow which provides functions that 

return the coefficients of the numerator of a CRE 

polynomial in a given variable. 

ratp_dense_coeffs (expr, x) 
Returns the coefficients of powers of x from highest to 

lowest 

matrix(R1,R2,…Rm)$ 
Creates matrix whose rows are R1,R2,…Rm which are lists 

of equal length. 

list_matrix_entries (M) Returns a list containing the elements of the matrix M 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 

radicals. 

and The logical conjunction operator. 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise 

the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 
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Definitions and Formulae: 

Linear Combination of vectors:  Let 𝑽 be a vector space over a field 𝑭. Let 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 be any 𝒏 

vectors of 𝑽. A vector of the form 

∑𝜶𝒊𝒗𝒊 =

𝒏

𝒊=𝟏

𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐+. . . +𝜶𝒏𝒗𝒏 

where 𝜶𝟏, 𝜶𝟐, . . . . , 𝜶𝒏  ∈ 𝑭 are scalars, is called a linear combination of the vectors 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏.  Any 

given vector 𝒗 is a linear combination of vectors 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 if ∃ scalars 𝜶𝟏, 𝜶𝟐, . . . . , 𝜶𝒏  ∈ 𝑭 such 

that 𝒗 = 𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐+. . . +𝜶𝒏𝒗𝒏. Otherwise, 𝒗 is not a linear combination of vectors 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏. 
 

 Linear Span of a subset:  Let 𝑽 be a vector space over a field 𝑭. Let 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a non-

empty subset of 𝒏 vectors of 𝑽. The set of all linear combinations of elements of S is called its linear 

span and is denoted by 𝑳(𝑺).  

𝑳(𝑺) = {∑𝜶𝒊𝒗𝒊 =

𝒏

𝒊=𝟏

𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐 +⋯+ 𝜶𝒏𝒗𝒏 | 𝒗𝒊 ∈ 𝑺, 𝜶𝒊 ∈ 𝑭, ∀ 𝒊 = 𝟏, 𝟐, , … . , 𝒏} 

Standard Vector spaces:  

i)  𝑹𝒏 = {(𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏)| 𝒙𝒊 ∈ 𝑹} the set of all n-tuples of real numbers is a vector space over 𝑹 

ii) 𝑷 = {∑ 𝒂𝒊𝒙
𝒊| 𝒏 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝒂𝒊 ∈ 𝑹 

𝒏
𝒊=𝟎 } the set of all polynomials in 𝑥 with real 

coefficients, at most of degree 𝑛 is a vector space over 𝑹 

iii) 𝑹𝒎×𝒏 = {[a𝒊𝒋]m×n
| a𝒊𝒋 ∈ 𝑹} is the set of all real matrices of order m× n is a real vector space. 

Program: 

Program to check whether 𝑣 is in 𝐿(𝑆). Expressing 𝑣 as linear combination of vectors of 𝑆 if it is in 𝐿(𝑆).  
where 𝑆 ⊆  𝑅𝑛 

v: given vector$ 

v1: vector 1 of S$ 

v2: vector 2 of S$ 

v3: vector 3 of S$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

M:linsolve(S.a-v,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)")  

and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 
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Program: 

Program to check whether 𝑣 is in 𝐿(𝑆). Expressing 𝑣 as linear combination of vectors of 𝑆 if it is in 𝐿(𝑆).  
where 𝑆 ⊆  𝑃 

load("ratpow")$ 

v: given vector$ 

v1: vector 1 of S$ 

v2: vector 2 of S$ 

v3: vector 3 of S$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

L:ratp_dense_coeffs(S.a-v,x)$ 

M:linsolve(L,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 

 

Program: 

Program to check whether 𝑣 is in 𝐿(𝑆). Expressing 𝑣 as linear combination of vectors of 𝑆 if it is in 𝐿(𝑆).  
where 𝑆 ⊆  𝑅𝑚×𝑛 

v: given matrix$ 

v1: matrix 1 of S$ 

v2: matrix 2 of S$ 

v3: matrix 3 of S$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

L:list_matrix_entries (S.a-v)$ 

M:linsolve(L,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 

 

Note: Number of members in list S and list a taken 3 each in above programs.  Take actual 

number of members present in S of given problem. 
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Worked Examples: 

Problem 1. Check whether 𝑣 = (1,2,3,5) is in 𝐿(𝑆) or not and express it as a linear combination of 

vectors of 𝑆 if it is in 𝐿(𝑆) where  𝑆 = {(2,3,4,5), (−1,−2, −3,−4), (6,7,8,9)} ⊆  𝑅4 

Program:  

v:[1,2,3,5]$  

v1:[2,3,4,5]$ 

v2:[-1,-2,-3,-4]$ 

v3:[6,7,8,9]$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

M:linsolve(S.a-v,a)$  

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[−1,−2, −3,−4], [2,3,4,5], [6,7,8,9]} 

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [1,2,3,5] 

𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝐿(𝑆) 

 

Problem 2. Check whether 𝑣 = (2,4,3) is in 𝐿(𝑆) or not and express it as a linear combination of 

vectors of 𝑆 if it is in 𝐿(𝑆) where  𝑆 = {(1,−1,0), (0,2,1)} ⊆  𝑅3 

 

Program:  

v:[2,4,3]$ 

v1:[1,-1,0]$ 

v2:[0,2,1]$ 

S:[v1,v2]$ 

a:[α,β]$ 

M:linsolve(S.a-v,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2])$ 
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Output: 
𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[0,2,1], [1, −1,0]} 

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [2,4,3] 

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆) 

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣2𝛽 + 𝑣1𝛼 = 3𝑣2 + 2𝑣1 

Problem 3. Check whether 𝑣 = (1,−2,5) is in 𝐿(𝑆) or not and express it as a linear combination of 

vectors of 𝑆 if it is in 𝐿(𝑆) where  𝑆 = {(1,1,1), (1,2,3), (2, −1,1)} ⊆  𝑅3 

Program:  

v:[1,-2,5]$  

v1:[1,1,1]$ 

v2:[1,2,3]$ 

v3:[2,-1,1]$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

M:linsolve(S.a-v,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 

Output: 
𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1,1,1], [1,2,3], [2, −1,1]} 

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [1,−2,5] 

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆) 

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 2𝑣3 + 3𝑣2 − 6𝑣1 

Problem 4. Check whether 𝑣 = 2𝑥3 + 𝑥2 + 3𝑥 − 1 is in 𝐿(𝑆) or not and express it as a linear 

combination of vectors of 𝑆 if it is in 𝐿(𝑆) where  𝑆 = {𝑥, 𝑥2 + 1, 𝑥3 − 1} ⊆ 𝑃 

Program:  

load("ratpow")$  

v:2*x^3+x^2+3*x-1$ 

v1:x$ 

v2:x^2+1$ 

v3:x^3-1$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

L:ratp_dense_coeffs(S.a-v,x)$ 
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M:linsolve(L,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {𝑥, 𝑥2 + 1, 𝑥3 − 1} 

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = 2𝑥3 + 𝑥2 + 3𝑥 − 1 

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆) 

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 2𝑣3 + 𝑣2 + 3𝑣1 
 

Problem 5. Check whether 𝑣 = 𝑥2 + 4𝑥 − 3 is in 𝐿(𝑆) or not and express it as a linear combination 

of vectors of 𝑆 if it is in 𝐿(𝑆) where  𝑆 = {𝑥2 − 2𝑥 + 5 , 2𝑥2 − 3𝑥, 𝑥 + 3} ⊆ 𝑃 

Program:  

load("ratpow")$  

v:x^2+4*x-3$ 

v1:x^2-2*x+5$ 

v2:x^2-3*x$ 

v3:x+3$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

L:ratp_dense_coeffs(S.a-v,x)$ 

M:linsolve(L,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {𝑥 + 3, 𝑥2 − 3𝑥, 𝑥2 − 2𝑥 + 5} 

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = 𝑥2 + 4𝑥 − 3 

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆) 

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 19𝑣3 + 13𝑣2 − 12𝑣1 



 

                           10  

Problem 6. Check whether 𝑣 = [
3 −1
1 −2

]is in 𝐿(𝑆) or not and express it as a linear combination of 

vectors of 𝑆 if it is in 𝐿(𝑆) where  𝑆 = {[
1 1
0 −1

] , [
1 1
−1 0

] , [
1 −1
0 0

]} ⊆ 𝑅2×2 

 

Program:  

v:matrix([3,-1],[1,-2])$  

v1:matrix([1,1],[0,-1])$ 

v2:matrix([1,1],[-1,0])$ 

v3:matrix([1,-1],[0,0])$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

L:list_matrix_entries (S.a-v)$ 

M:linsolve(L,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[
1 −1
0 0

] , [
1 1
−1 0

] , [
1 1
0 −1

]} 

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [
3 −1
1 −2

] 

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆) 

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 2𝑣3 − 𝑣2 + 2𝑣1 

 

Problem 7. Check whether 𝑣 = [
6 −1
−8 −8

]is in 𝐿(𝑆) or not and express it as a linear combination of 

vectors of 𝑆 if it is in 𝐿(𝑆) where  𝑆 = {[
1 2
−1 3

] , [
0 1
2 4

] , [
4 −2
0 −2

]} ⊆ 𝑅2×2 

Program:  

v:matrix([6,-1],[-8,-8])$ 

v1:matrix([1,2],[-1,3])$ 

v2:matrix([0,1],[2,4])$ 

v3:matrix([4,-2],[0,-2])$ 

S:[v1,v2,v3]$ 

a:[α,β,γ]$ 

L:list_matrix_entries (S.a-v)$ 
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M:linsolve(L,a)$ 

print("Given set of vectors is S=",setify(S))$ 

print("Given vector is v=",v)$ 

if M=[] then print("v is not in L(S)") 

else print("v is in L(S)") and print(" Required Linear combination is v=", M.['v1,'v2,'v3])$ 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[
0 1
2 4

] , [
1 2
−1 3

] , [
4 −2
0 −2

]} 

𝐺𝑖𝑣𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠 𝑣 = [
6 −1
−8 −8

] 

𝑣 𝑖𝑠 𝑖𝑛 𝐿(𝑆) 

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣 = 𝑣3𝛾 + 𝑣2𝛽 + 𝑣1𝛼 = 𝑣3 − 3𝑣2 + 2𝑣1 

 

 

 

 

 

 

 

 

 

 
 

Exercise: 

Write a program to check whether 𝑣 is in 𝐿(𝑆) or not and express it as a linear combination of vectors 

of 𝑆 if it is in 𝐿(𝑆) for the following: 
 

1. 𝑣 = (3,−7,6),  𝑆 = {(1,−3,2), (2,4,1), (1,1,1)}                        (Answer: v is in L(S)) 

2. 𝑣 = (3,9, −4,4),  𝑆 = {(1,−2,0,3), (2, −1,2,1), (2,3,0,1)}        (Answer: v is in L(S)) 

3. 𝑣 = 𝑥2 + 𝑥 + 1,  𝑆 = {𝑥, 𝑥2 + 1, 𝑥3 − 1}                       (Answer: v is in L(S)) 

4. 𝑣 = 2𝑥3 + 𝑥2 − 𝑥 − 5,  𝑆 = {1, 𝑥 + 1, 𝑥2 + 𝑥 + 1, 𝑥3 + 𝑥2 + 𝑥 + 1}    (Answer: v is in L(S)) 

5. 𝑣 = [
−1 7
5 1

],  𝑆 = { [
0 1
2 4

] , [
1 2
−1 3

] , [
4 −2
0 −2

] }            (Answer: v is not  in L(S)) 

6. 𝑣 = [
6 3
0 8

],  𝑆 = { [
0 1
2 4

] , [
1 2
−1 3

] , [
4 −2
0 −2

] }            (Answer: v is  in L(S)) 
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Program 2 

Program to verify linear dependence and independence 

Aim: To check whether given set of vectors is linearly dependent or independent using 

Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 
 

 

Key Function 

. (dot) 

The operator . represents noncommutative multiplication 

and scalar product. It is used for usual multiplication of 

matrices. 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

hipow (expr, x) Returns the highest explicit exponent of x in expr 

lopow (expr, x) 
Returns the lowest exponent of x which explicitly appears 

in expr. 

matrix(R1,R2,…Rm)$ 
Creates matrix whose rows are R1,R2,…Rm which are lists 

of equal length. 

list_matrix_entries (M) Returns a list containing the elements of the matrix M 

apply('matrix,L) Converting nested lists L to matrix 

rank (M) Computes the rank of the matrix M. 

setify (A) Constructs a set from the elements of the list A. 

' The single quote operator ' prevents evaluation. 

makelist (expr, i, i_0, i_max) 

Returns the list of elements obtained when ev 

(expr, i=j) is applied to the elements j of the 

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or 

equal to |i_max|. 

length (expr) 
Returns the number of parts in the external (displayed) 

form of expr 

:= The function definition operator 

and The logical conjunction operator. 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise 

the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 



 

                           13

Definitions and Formulae: 

Linearly Dependent Set: Let 𝑽 be a vector space over a field 𝑭. Let 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a non-

empty subset of 𝒏 vectors of 𝑽. Then the set 𝑺 is called linearly dependent if ∃ scalars 

𝜶𝟏, 𝜶𝟐, . . . . , 𝜶𝒏  ∈ 𝑭 such that  

∑𝜶𝒊𝒗𝒊 =

𝒏

𝒊=𝟏

𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐+. . . +𝜶𝒏𝒗𝒏 = 𝟎 with 𝜶𝒊 ≠ 𝟎 for some 𝒊 

Linearly Independent Set:  Let 𝑽 be a vector space over a field 𝑭. Let 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a non-

empty subset of 𝒏 vectors of  𝑽. Then the set 𝑺 is called linearly independent iff 

∑𝜶𝒊𝒗𝒊 =

𝒏

𝒊=𝟏

𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐+. . . +𝜶𝒏𝒗𝒏 = 𝟎 ⇒ 𝜶𝒊 = 𝟎 ∀ 𝒊 

Note that linear dependence and independence are mutually exclusive. Thus, a set is either linearly 

independent or dependent but not both. So, we can say that linearly dependent set is not linearly 

independent and vice-versa. 
 

Standard Vector spaces:  

i)  𝑹𝒏 = {(𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏)| 𝒙𝒊 ∈ 𝑹} the set of all n-tuples of real numbers is a vector space over 𝑹 

ii) 𝑷 = {∑ 𝒂𝒊𝒙
𝒊| 𝒏 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝒂𝒊 ∈ 𝑹 

𝒏
𝒊=𝟎 } the set of all polynomials in 𝑥 with real 

coefficients, at most of degree 𝑛 is a vector space over 𝑹 

iii) 𝑹𝒎×𝒏 = {[a𝒊𝒋]m×n
| a𝒊𝒋 ∈ 𝑹} is the set of all real matrices of order m× n is a real vector space. 

 

Program: 

Program to check whether 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3} is linearly dependent or independent where 𝑆 ⊆  𝑅𝑛 
 

v1: vector 1 of S$ 

v2: vector 2 of S$ 

v3: vector 3 of S$ 

S:[v1,v2,v3]$ 

M:apply('matrix,S)$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 

 

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any 

number of vectors.  

 

Prepared on 05.04.2024 by   E N, Assistant Professor of Mathematics
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Program: 

Program to check whether 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3} is linearly dependent or independent where 𝑆 ⊆  𝑃 
 

v1: vector 1 of S$ 

v2: vector 2 of S$ 

v3: vector 3 of S$ 

S:[v1,v2,v3]$ 

L:makelist(makelist(coeff (S[j], x,i),i,lopow(S,x),hipow(S,x)),j,1,length(S))$ 

M:apply('matrix,L)$ 

print("Given set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 

 

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any 

number of vectors.  

 

Program: 

Program to check whether 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3} is linearly dependent or independent where 𝑆 ⊆  𝑅𝑚×𝑛 
 

g(x):=list_matrix_entries(x) 

v1: matrix 1 of S$ 

v2: matrix 2 of S$ 

v3: matrix 3 of S$ 

S:[v1,v2,v3]$ 

T:makelist(g(S[i]),i,length(S))$ 

M:apply('matrix,T)$ 

print("Given set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 
 

Note:  In the above program, 3 vectors are taken in S for illustration. S can contain any 

number of vectors.  
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Worked Examples: 

Problem 1. Write a program to check whether 𝑆 = {(1,0), (1,1)} is linearly independent or not 

where 𝑆 ⊆  𝑅2 

Program:  

v1:[1,0]$ 

v2:[1,1]$ 

S:[v1,v2]$ 

M:apply('matrix,S)$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1,0], [1,1]} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

 

 

Problem 2. Write a program to check whether 𝑆 = {(1,1,2,4), (2, −1,−5,2), (1, −1,−4,0), (2,1,1,6)} is 

linearly independent or not where 𝑆 ⊆  𝑅4 

Program:  

v1:[1,1,2,4]$ 

v2:[2,-1,-5,2]$ 

v3:[1,-1,-4,0]$ 

v4:[2,1,1,6]$ 

S:[v1,v2,v3,v4]$ 

M:apply('matrix,S)$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1, −1,−4,0], [1,1,2,4], [2, −1,−5,2], [2,1,1,6]} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 
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Problem 3. Write a program to check whether 𝑆 = {(1,0,−1), (3,1,1), (0,1,−1)} is linearly independent 

or not where 𝑆 ⊆  𝑅3 

Program:  

v1:[1,0,-1]$  

v2:[3,1,1]$ 

v3:[0,1,-1]$ 

S:[v1,v2,v3]$ 

M:apply('matrix,S)$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[0,1, −1], [1,0, −1], [3,1,1]} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦  𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

 

Problem 4. Write a program to check whether 𝑆 = {𝑥2 + 1, 𝑥 − 1, 𝑥 + 1} is linearly independent or not 

where 𝑆 ⊆  𝑃 

 

Program:  

v1:x^2+1$ 

v2:x-1$ 

v3:x+1$ 

S:[v1,v2,v3]$ 

L:makelist(makelist(coeff (S[j], x,i),i,lopow(S,x),hipow(S,x)),j,1,length(S))$ 

M:apply('matrix,L)$ 

print("Given set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {𝑥 − 1, 𝑥 + 1, 𝑥2 + 1} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦  𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 
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Problem 5. Write a program to check whether 𝑆 = {1,1 + 𝑥, 1 + 𝑥 + 𝑥2, 1 + 𝑥 + 𝑥2 + 𝑥3} is linearly 

independent or not where 𝑆 ⊆  𝑃 

Program:  

v1:1$ 

v2:1+x$ 

v3:1+x+x^2$ 

v4:1+x+x^2+x^3$ 

S:[v1,v2,v3,v4]$ 

L:makelist(makelist(coeff (S[j], x,i),i,lopow(S,x),hipow(S,x)),j,1,length(S))$ 

M:apply('matrix,L)$ 

print("Given set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {1, 𝑥 + 1, 𝑥2 + 𝑥 + 1, 𝑥3 + 𝑥2 + 𝑥 + 1} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦  𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

Problem 6. Write a program to check whether 𝑆 = {[
1 2
−1 3

] , [
0 1
2 4

] , [
4 8
−4 12

]} is linearly 

independent or not where 𝑆 ⊆  𝑅2×2 

Program:  

g(x):=list_matrix_entries(x)$  

v1:matrix([1,2],[-1,3])$ 

v2:matrix([0,1],[2,4])$ 

v3:matrix([4,8],[-4,12])$ 

S:[v1,v2,v3]$ 

T:makelist(g(S[i]),i,length(S))$ 

M:apply('matrix,T)$ 

print("Given set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {(
0 1
2 4

) , (
1 2
−1 3

) , (
4 8
−4 12

)} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦  𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 
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Problem 7. Write a program to check whether 𝑆 = {[
0 1 −1
1 2 1

] , [
1 −1 1
1 2 0

] , [
1 2 1
0 3 −1

]} is linearly 

independent or not where 𝑆 ⊆  𝑅2×3 

Program:  

g(x):=list_matrix_entries(x)$  

v1:matrix([1,2,1],[0,3,-1])$ 

v2:matrix([1,-1,1],[1,2,0])$ 

v3:matrix([0,1,-1],[1,2,1])$ 

S:[v1,v2,v3]$ 

T:makelist(g(S[i]),i,length(S))$ 

M:apply('matrix,T)$ 

print("Given set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

else print("Given set of vectors is Linearly Dependent")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {(
0 1 −1
1 2 1

) , (
1 −1 1
1 2 0

) , (
1 2 1
0 3 −1

)} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦  𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

  

Exercise: 

 Write a program to check linear dependence and independence of given set 𝑆  

1. 𝑆 = {(−1,0,1), (1,0,1), (1,1,0)}  ⊆  𝑅3       (Answer: Linearly Independent) 

2. 𝑆 = {(−2,1,3), (1,2,3), (3,1,0)}  ⊆  𝑅3       (Answer: Linearly Dependent) 

3. 𝑆 = {(1,−2,5), (2,3,1)}  ⊆  𝑅3        (Answer: Linearly Independent) 

4. 𝑆 = {2, 𝑥 + 1,3𝑥 − 1, 𝑥2}  ⊆  𝑃        (Answer: Linearly Dependent) 

5. 𝑆 = {𝑥2 + 6𝑥 + 5, 2𝑥2 + 4𝑥 + 3, 𝑥2 − 2𝑥 + 1}  ⊆  𝑃     (Answer: Linearly Independent) 

6. 𝑆 = {[
1 2
−1 3

] , [
1 3
1 7

] , [
0 1
2 4

] , [
4 −2
0 −2

]} 𝑆 ⊆  𝑅2×2     (Answer: Linearly Dependent) 

7. 𝑆 = {[
1 −2 5
−1 3 2

] , [
1 −1 1
2 3 0

] , [
4 2 3
1 −2 1

]} 𝑆 ⊆  𝑅2×3  (Answer: Linearly Independent) 
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Program 3 

Program to find basis and dimension of the subspaces. 

Aim: To find basis and dimension of the given subspace of a vector space using 

Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 

Key Function 

args(M) Converts a matrix M to a nested list 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

triangularize (M) 
Returns the upper triangular form of the matrix M, as 

produced by Gaussian elimination 

firstn (expr, count) Returns the first count arguments of expr 

matrix(R1,R2,…Rm)$ 
Creates matrix whose rows are R1,R2,…Rm which are lists 

of equal length. 

list_matrix_entries (M) Returns a list containing the elements of the matrix M 

apply('matrix,L) Converting nested lists L to matrix 

rank (M) Computes the rank of the matrix M. 

setify (A) Constructs a set from the elements of the list A. 

' The single quote operator ' prevents evaluation. 

makelist (expr, i, i_0, i_max) 

Returns the list of elements obtained when ev 

(expr, i=j) is applied to the elements j of the 

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or 

equal to |i_max|. 

length (expr) 
Returns the number of parts in the external (displayed) 

form of expr 

:= The function definition operator 

and The logical conjunction operator. 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise 

the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 
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Definitions and Formulae: 

Basis and Dimension of a Vector space: Let 𝑽 be a vector space over a field 𝑭. A subset 𝑩 =

{𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} ⊆  𝑽  is called a basis of  𝑽 if  

i) 𝑩  is linearly independent and 

ii) 𝑩 spans 𝑽 

Furthermore, the number of vectors in a basis of 𝑽 is called the dimension of 𝑽 

Example: 1) The dimension of 𝑹𝒏, the vector space of n-tuples of real numbers over 𝑹, is 𝒏 

     2) The dimension of 𝑹𝒎×𝒏, the vector space of all 𝒎× 𝒏 real matrices over 𝑹, is 𝒎𝒏 

        3) The dimension of 𝑷𝒏, the vector space of all polynomials in x of degree at most 𝒏 with  

          real coefficients over  𝑹, is 𝒏 + 𝟏 

Basis and Dimension of a Subspace: Let 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a subset of vector space 𝑽. A basis 

for the subspace spanned by 𝑺 is a linearly independent subset 𝑩 ⊆  𝑺 which spans the subspace. If 

𝑺 itself is linearly independent, then 𝑺 itself is a basis and its cardinality is the dimension of the 

subspace. If 𝑺 is linearly dependent, then any maximal linearly independent subset of 𝑺 will be a basis 

for the subspace and its cardinality will be the dimension. 

 

Program: 

Program to find a basis and the dimension of the subspace spanned by the set 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3} 

where 𝑆 ⊆  𝑅𝑛 

 

v1: vector 1 of S$ 

v2: vector 2 of S$ 

v3: vector 3 of S$ 

S:[v1,v2,v3]$ 

M:triangularize(apply('matrix,S))$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

and print("A Basis for subspace L(S) is B=", setify(S)) 

and print("Dimension of subspace L(S) =", rank(M)) 

else print("Given set of vectors is Linearly Dependent") 

and print("A Basis for subspace L(S) is B=", setify(firstn(args(M),rank(M))))  

and print("Dimension of subspace L(S) =", rank(M))$ 

 

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any 

number of vectors. 
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Program: 

Program to find a basis and the dimension of the subspace spanned by the set 𝑆 = {𝒗𝟏, 𝒗𝟐, 𝒗3} 

where 𝑆 ⊆  𝑅𝑚×𝑛 

 

g(x):=list_matrix_entries(x)$ 

f(x):=matrix([x[1],x[2]],[x[3],x[4]])$ 

v1: vector 1 of S$ 

v2: vector 2 of S$ 

v3: vector 3 of S$ 

S:[v1,v2,v3]$ 

T:makelist(g(S[i]),i,length(S))$ 

M:triangularize(apply('matrix,T))$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

and print("A Basis for subspace L(S) is B=", setify(S)) 

and print("Dimension of subspace L(S) =", rank(M)) 

else print("Given set of vectors is Linearly Dependent") 

and print("A Basis for subspace L(S) is B=", 

setify(makelist(f(firstn(args(M),rank(M))[i]),i,1,rank(M))))  

and print("Dimension of subspace L(S) =", rank(M))$ 

 

Note: In the above program, 3 vectors are taken in S for illustration. S can contain any 

number of vectors. 
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Worked Examples: 

Problem 1. Write a program to find a basis and the dimension of the subspace spanned by the set 

𝑆 = {(1,2,3), (3,1,0), (−2,1,3)} ⊆ 𝑅3 

 

Program:  

v1:[1,2,3]$ 

v2:[3,1,0]$ 

v3:[-2,1,3]$ 

S:[v1,v2,v3]$ 

M:triangularize(apply('matrix,S))$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

and print("A Basis for subspace L(S) is B=", setify(S)) 

and print("Dimension of subspace L(S) =", rank(M)) 

else print("Given set of vectors is Linearly Dependent") 

and print("A Basis for subspace L(S) is B=", setify(firstn(args(M),rank(M))))  

and print("Dimension of subspace L(S) =", rank(M))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[−2,1,3], [1,2,3], [3,1,0]} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[0,5,9], [3,1,0]} 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆)  = 2 
 

Problem 2. Write a program to find a basis and the dimension of the subspace spanned by the set 

𝑆 = {(1,1,2,4), (2, −1,−5,2), (1, −1,−4, 0), (2,1,1,6)} ⊆ 𝑅4 

Program:  

v1:[1,1,2,4]$ 

v2:[2,-1,-5,2]$ 

v3:[1,-1,-4,0]$ 

v4:[2,1,1,6]$ 

S:[v1,v2,v3,v4]$ 

M:triangularize(apply('matrix,S))$ 

print("Given Set of Vectors is S=", setify(S))$ 
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if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

and print("A Basis for subspace L(S) is B=", setify(S)) 

and print("Dimension of subspace L(S) =", rank(M)) 

else print("Given set of vectors is Linearly Dependent") 

and print("A Basis for subspace L(S) is B=", setify(firstn(args(M),rank(M))))  

and print("Dimension of subspace L(S) =", rank(M))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1, −1,−4,0], [1,1,2,4], [2, −1,−5,2], [2,1,1,6]} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[0,1,3,2], [1, −1,−4,0]} 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆)  = 2 

 

Problem 3. Write a program to find a basis and the dimension of the subspace spanned by the set 

𝑆 = {(1,2,0), (1,1,1), (2,0,1)} ⊆ 𝑅3 

Program:  

v1:[1,2,0]$ 

v2:[1,1,1]$ 

v3:[2,0,1]$ 

S:[v1,v2,v3]$ 

M:triangularize(apply('matrix,S))$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

and print("A Basis for subspace L(S) is B=", setify(S)) 

and print("Dimension of subspace L(S) =", rank(M)) 

else print("Given set of vectors is Linearly Dependent") 

and print("A Basis for subspace L(S) is B=", setify(firstn(args(M),rank(M))))  

and print("Dimension of subspace L(S) =", rank(M))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[1,1,1], [1,2,0], [2,0,1]} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[1,1,1], [1,2,0], [2,0,1]} 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆)  = 3 
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Problem 4. Write a program to find a basis and the dimension of the subspace spanned by the set 

𝑆 = {[
1 −5
−4 2

] , [
1 1
−1 5

] , [
2 −4
−5 7

] , [
1 −7
−5 1

]} ⊆ 𝑅2×2 

 

Program:  

g(x):=list_matrix_entries(x)$ 

f(x):=matrix([x[1],x[2]],[x[3],x[4]])$ 

v1:matrix([1,-5],[-4,2])$ 

v2:matrix([1,1],[-1,5])$ 

v3:matrix([2,-4],[-5,7])$ 

v4:matrix([1,-7],[-5,1])$ 

S:[v1,v2,v3,v4]$ 

T:makelist(g(S[i]),i,length(S))$ 

M:triangularize(apply('matrix,T))$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

and print("A Basis for subspace L(S) is B=", setify(S)) 

and print("Dimension of subspace L(S) =", rank(M)) 

else print("Given set of vectors is Linearly Dependent") 

and print("A Basis for subspace L(S) is B=", setify(makelist(f(firstn(args(M),rank(M))[i]),i,1,rank(M))))  

and print("Dimension of subspace L(S) =", rank(M))$ 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[
1 −7
−5 1

] , [
1 −5
−4 2

] , [
1 1
−1 5

] , [
2 −4
−5 7

]} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[
0 6
3 3

] , [
1 −5
−4 2

]} 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆)  = 2 
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Problem 5. Write a program to find a basis and the dimension of the subspace spanned by the set 

𝑆 = {[
1 −2 5
−1 3 2

] , [
1 −1 1
2 3 0

] , [
2 −3 6
1 6 2

]} ⊆ 𝑅2×3 

 

Program:  

g(x):=list_matrix_entries(x)$  

f(x):=matrix([x[1],x[2],x[3]],[x[4],x[5],x[6]])$ 

v1:matrix([1,-2,5],[-1,3,2])$ 

v2:matrix([1,-1,1],[2,3,0])$ 

v3:matrix([2,-3,6],[1,6,2])$ 

S:[v1,v2,v3]$ 

T:makelist(g(S[i]),i,length(S))$ 

M:triangularize(apply('matrix,T))$ 

print("Given Set of Vectors is S=", setify(S))$ 

if rank(M)=length(S) then print("Given set of vectors is Linearly Independent") 

and print("A Basis for subspace L(S) is B=", setify(S)) 

and print("Dimension of subspace L(S) =", rank(M)) 

else print("Given set of vectors is Linearly Dependent") 

and print("A Basis for subspace L(S) is B=", setify(makelist(f(firstn(args(M),rank(M))[i]),i,1,rank(M))))  

and print("Dimension of subspace L(S) =", rank(M))$ 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝑆 = {[
1 −2 5
−1 3 2

] , [
1 −1 1
2 3 0

] , [
2 −3 6
1 6 2

]} 

𝐺𝑖𝑣𝑒𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑠 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

𝐴 𝐵𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆) 𝑖𝑠 𝐵 = {[
0 −1 4
−3 0 2

] , [
1 −1 1
2 3 0

]} 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝐿(𝑆)  = 2 
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Exercise: 

Write a program to find a basis and the dimension of the subspace spanned by the set 𝑆  

1. 𝑆 = {(2,4,2), (1, −1,0), (1,2,1), (0,3,1)} ⊆ 𝑅3  

(Answer: B={(0,6,2), (1, −1,0)}, dim L(S)=2 ) 

2. 𝑆 = {(1,1,1), (1,0,1), (1,0,0), (0,0,1)} ⊆ 𝑅3    

(Answer: B={(0,0,1), (0,1,1), (0,0,1)}, dim L(S)=3) 

3. 𝑆 = {(1,1), (1, −1)} ⊆ 𝑅2      

(Answer: B={(1,1), (1, −1)}, dim L(S)=2 ) 

4. 𝑆 = {[
1 0
0 0

] , [
0 1
1 0

] , [
0 0
0 1

]} ⊆ 𝑅2×2    

(Answer: B={[
0 0
0 1

] , [
0 1
1 0

] , [
1 0
0 0

]}, dim L(S)=3 ) 
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Program 4 

Program to verify if a function is a linear transformation or not. 

Aim: To verify if the given function is a linear transformation or not from a vector 

space to a vector space, using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 

Key Function 

. (dot) 

The operator . represents noncommutative multiplication 

and scalar product. It is used for usual multiplication of 

matrices. 

* (asterisk) The operator * represents commutative multiplication 

^  Exponentiation operator or power or index 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

L[i] Returns i-th element of the list L 

' The single quote operator ' prevents evaluation. 

makelist (expr, i, i_0, i_max) 

Returns the list of elements obtained when ev 

(expr, i=j) is applied to the elements j of the 

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or 

equal to |i_max|. 

length (expr) 
Returns the number of parts in the external (displayed) 

form of expr 

:= The function definition operator 

and The logical conjunction operator. 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise 

the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 

radicals. 

assoc (key, e) 
assoc searches for key as the first part of an argument of e 

and returns the second part of the first match, if any. 
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Definitions and Formulae: 

Linear Transformation from a vector space to a vector space: Let 𝑼 and V be two vector spaces 

over the same field 𝑭. A mapping or function 𝑻:𝑼 ⟶ 𝑽 is called a linear transformation if 

𝑻(𝜶 𝒖𝟏 +  𝜷 𝒖𝟐 ) = 𝜶 𝑻(𝒖𝟏) + 𝜷 𝑻(𝒖𝟐) ∀ 𝒖𝟏, 𝒖𝟐 ∈  𝑼 and 𝜶, 𝜷 ∈ 𝑭 

A linear transformation is also called a linear mapping. It is a mapping between two vector spaces 

that preserves the operations of vector addition and scalar multiplication. 

 

To verify whether given function 𝑇 is a linear transformation or not, just verify that  

𝑻(𝜶 𝒖𝟏 +  𝜷 𝒖𝟐 ) and 𝜶 𝑻(𝒖𝟏) + 𝜷 𝑻(𝒖𝟐) are equal. If these are not equal, then 𝑻 is not a linear 

transformation. 

Program: 

Program to verify whether given function 𝑻:𝑹𝒎⟶𝑹𝒏 is a linear transformation or not. 

T(x):=define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

Y:[p,q,r]$ 

LHS:radcan(T(a*X+b*Y))$ 

RHS:radcan(a*T(X)+b*T(Y))$ 

print("Given function isT(x,y,z)=", T(X))$ 

print("T(aX+bY)=",LHS)$ 

print("aT(X)+bT(Y)=",RHS)$ 

if LHS=RHS then print("Given function is a Linear transformation") 

else print("Given function is not a linear transformation")$ 

Note: In the above program X:[x,y,z], Y:[p,q,r] is taken for illustration. Take X, Y 

according to given domain of T. 

       1. For 𝑹𝒎 = 𝑹𝟐, take X:[x,y], Y:[p,q] 

      2. For 𝑹𝒎 = 𝑹𝟑, take X:[x,y,z], Y:[p,q,r] 

      3. For 𝑹𝒎 = 𝑹𝟒, take X:[w,x,y,z], Y:[p,q,r,s] etc. 
 

Examples for defining function: 

      1. If 𝑻(𝒙, 𝒚, 𝒛) = (𝟐𝒙 + 𝟑𝒚 − 𝒛, 𝟓𝒛 − 𝒚), then define 

    𝑻(𝒙):=  [ 𝟐 ∗ 𝒙[𝟏] + 𝟑 ∗ 𝒙[𝟐] − 𝒙[𝟑], 𝟓 ∗ 𝒙[𝟑] − 𝒙[𝟐] ] 

      2. If 𝑻(𝒙, 𝒚) = (𝒚 − 𝒙, 𝒚, 𝒙 + 𝒚), then define 

    𝑻(𝒙):=  [ 𝒙[𝟐] − 𝒙[𝟏], 𝒙[𝟐], 𝒙[𝟏] + 𝒙[𝟐] ] etc. 

 



 

                           29

Worked Examples: 

Problem 1. Write a program to verify whether 𝑻:𝑹𝟑⟶𝑹𝟐 defined by  𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑦 + 𝑧) 

is a linear transformation or not. 

 Program:  

T(x):=[x[1]+x[2],x[2]+x[3]]$  

X:[x,y,z]$ 

Y:[p,q,r]$ 

LHS:radcan(T(a*X+b*Y))$ 

RHS:radcan(a*T(X)+b*T(Y))$ 

print("Given function isT(x,y,z)=", T(X))$ 

print("T(aX+bY)=",LHS)$ 

print("aT(X)+bT(Y)=",RHS)$ 

if LHS=RHS then print("Given function is a Linear transformation") 

else print("Given function is not a linear transformation")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦] 

𝑇(𝑎𝑋 + 𝑏𝑌) = [𝑎𝑦 + 𝑎𝑥 + 𝑏𝑞 + 𝑏𝑝, 𝑎𝑧 + 𝑎𝑦 + 𝑏𝑟 + 𝑏𝑞] 

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [𝑎𝑦 + 𝑎𝑥 + 𝑏𝑞 + 𝑏𝑝, 𝑎𝑧 + 𝑎𝑦 + 𝑏𝑟 + 𝑏𝑞] 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

 

Problem 2. Write a program to verify whether 𝑻:𝑹𝟑⟶𝑹𝟑 defined by  

𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 − 𝑧, 2𝑥 − 𝑦, 𝑦 + 2𝑧) is a linear transformation or not. 

 Program:  

T(x):=[x[1]+x[2]-x[3],2*x[1]-x[2],x[2]+2*x[3]]$ 

X:[x,y,z]$  

Y:[p,q,r]$ 

LHS:radcan(T(a*X+b*Y))$ 

RHS:radcan(a*T(X)+b*T(Y))$ 

print("Given function isT(x,y,z)=", T(X))$ 

print("T(aX+bY)=",LHS)$ 

print("aT(X)+bT(Y)=",RHS)$ 

if LHS=RHS then print("Given function is a Linear transformation") 

else print("Given function is not a linear transformation")$ 
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Output: 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [−𝑧 + 𝑦 + 𝑥, 2𝑥 − 𝑦, 2𝑧 + 𝑦] 

𝑇(𝑎𝑋 + 𝑏𝑌) = [−𝑎𝑧 + 𝑎𝑦 + 𝑎𝑥 − 𝑏𝑟 + 𝑏𝑞 + 𝑏𝑝,−𝑎𝑦 + 2𝑎𝑥 − 𝑏𝑞 + 2𝑏𝑝, 2𝑎𝑧 + 𝑎𝑦 + 2𝑏𝑟 + 𝑏𝑞] 

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [−𝑎𝑧 + 𝑎𝑦 + 𝑎𝑥 − 𝑏𝑟 + 𝑏𝑞 + 𝑏𝑝,−𝑎𝑦 + 2𝑎𝑥 − 𝑏𝑞 + 2𝑏𝑝, 2𝑎𝑧 + 𝑎𝑦 + 2𝑏𝑟 + 𝑏𝑞] 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

Problem 3. Write a program to verify whether 𝑻:𝑹𝟑⟶𝑹 defined by  𝑇(𝑥, 𝑦, 𝑧) = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧  

for a fixed (𝛼, 𝛽, 𝛾) is a linear transformation or not. 

 Program:  

T(x):=α*x[1]+β*x[2]+γ*x[3]$ 

X:[x,y,z]$ 

Y:[p,q,r]$ 

LHS:radcan(T(a*X+b*Y))$ 

RHS:radcan(a*T(X)+b*T(Y))$ 

print("Given function isT(x,y,z)=", T(X))$ 

print("T(aX+bY)=",LHS)$ 

print("aT(X)+bT(Y)=",RHS)$ 

if LHS=RHS then print("Given function is a Linear transformation") 

else print("Given function is not a linear transformation")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = 𝑧𝛾 + 𝑦𝛽 + 𝑥𝛼 

𝑇(𝑎𝑋 + 𝑏𝑌) = (𝑎𝑧 + 𝑏𝑟)𝛾 + (𝑎𝑦 + 𝑏𝑞)𝛽 + (𝑎𝑥 + 𝑏𝑝)𝛼 

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = (𝑎𝑧 + 𝑏𝑟)𝛾 + (𝑎𝑦 + 𝑏𝑞)𝛽 + (𝑎𝑥 + 𝑏𝑝)𝛼 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

Problem 4. Write a program to verify whether 𝑻:𝑹 ⟶ 𝑹𝟑 defined by  𝑇(𝑥) = [𝑥, 𝑥2, 𝑥3]  is a linear 

transformation or not. 

 Program:  

T(x):=[x,x^2,x^3]$ 

LHS:radcan(T(a*x+b*y))$ 

RHS:radcan(a*T(x)+b*T(y))$ 

print("Given function isT(x)=", T(x))$ 

print("T(ax+by)=",LHS)$ 

print("aT(x)+bT(y)=",RHS)$ 

if LHS=RHS then print("Given function is a Linear transformation") 

else print("Given function is not a linear transformation")$ 
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Output: 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥) = [𝑥, 𝑥2, 𝑥3] 

𝑇(𝑎𝑋 + 𝑏𝑌) = [𝑏𝑦 + 𝑎𝑥, 𝑏2𝑦2 + 2𝑎𝑏𝑥𝑦 + 𝑎2𝑥2, 𝑏3𝑦3 + 3𝑎𝑏2𝑥𝑦2 + 3𝑎2𝑏𝑥2𝑦 + 𝑎3𝑥3] 

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [𝑏𝑦 + 𝑎𝑥, 𝑏𝑦2 + 𝑎𝑥2, 𝑏𝑦3 + 𝑎𝑥3] 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

Problem 5. Write a program to verify whether 𝑻:𝑹𝟒⟶𝑹𝟒 defined by  𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑥, 𝑦, 𝑧] is 

a linear transformation or not. 

 Program:  

T(x):=[0,x[2],x[3],x[4]]$ 

X:[w,x,y,z]$ 

Y:[p,q,r,s]$ 

LHS:radcan(T(a*X+b*Y))$ 

RHS:radcan(a*T(X)+b*T(Y))$ 

print("Given function isT(w,x,y,z)=", T(X))$ 

print("T(aX+bY)=",LHS)$ 

print("aT(X)+bT(Y)=",RHS)$ 

if LHS=RHS then print("Given function is a Linear transformation") 

else print("Given function is not a linear transformation")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑥, 𝑦, 𝑧] 

𝑇(𝑎𝑋 + 𝑏𝑌) = [0, 𝑎𝑥 + 𝑏𝑞, 𝑎𝑦 + 𝑏𝑟, 𝑎𝑧 + 𝑏𝑠] 

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [0, 𝑎𝑥 + 𝑏𝑞, 𝑎𝑦 + 𝑏𝑟, 𝑎𝑧 + 𝑏𝑠] 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

Problem 6. Write a program to verify whether 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 

              𝑇(𝑥, 𝑦) = [𝑥 cos(𝜃) − 𝑦 sin(𝜃) , 𝑥 sin(𝜃) + 𝑦 cos(𝜃)] is a linear transformation or not. 

 Program:  

T(x):=[x[1]*cos(θ)-x[2]*sin(θ),x[1]*sin(θ)+x[2]*cos(θ)]$ 

X:[x,y]$ 

Y:[p,q]$ 

LHS:radcan(T(a*X+b*Y))$ 

RHS:radcan(a*T(X)+b*T(Y))$ 

print("Given function isT(x,y)=", T(X))$ 

print("T(aX+bY)=",LHS)$ 

print("aT(X)+bT(Y)=",RHS)$ 
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if LHS=RHS then print("Given function is a Linear transformation") 

else print("Given function is not a linear transformation")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇( 𝑥, 𝑦) = [𝑥 cos(𝜃) − 𝑦 sin(𝜃) , 𝑥 sin(𝜃) + 𝑦 cos(𝜃)] 

𝑇(𝑎𝑋 + 𝑏𝑌) = [(−𝑎𝑦 − 𝑏𝑞) sin(𝜃) + (𝑎𝑥 + 𝑏𝑝) cos(𝜃) , (𝑎𝑥 + 𝑏𝑝) sin(𝜃) + (𝑎𝑦 + 𝑏𝑞) cos(𝜃)] 

𝑎𝑇(𝑋) + 𝑏𝑇(𝑌) = [(−𝑎𝑦 − 𝑏𝑞) sin(𝜃) + (𝑎𝑥 + 𝑏𝑝) cos(𝜃) , (𝑎𝑥 + 𝑏𝑝) sin(𝜃) + (𝑎𝑦 + 𝑏𝑞) cos(𝜃)] 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

 

 

 

 

 

 

 

 

Exercise: 

Write a program to verify whether given function is a linear transformation or not. 

 

1. 𝑻:𝑹𝟑⟶𝑹 defined by  𝑇(𝑥, 𝑦, 𝑧) = 𝑦       (Answer: linear transformation) 

2. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by  𝑇(𝑥, 𝑦) = (𝑥, −𝑦)      (Answer: linear transformation) 

3. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by  𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧)      (Answer: linear transformation) 

4. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by  𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑦 + 𝑧)     (Answer: linear transformation) 

5. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by  𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 + 𝑧, 𝑥 + 𝑦 + 𝑧, 𝑥 + 𝑦 + 𝑧)      

         (Answer: linear transformation) 

6. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by  𝑇(𝑥, 𝑦, 𝑧) = (0, 0)      (Answer: linear transformation) 

7. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by  𝑇(𝑥, 𝑦) = (𝑥 + 1, 𝑦 + 2)     (Answer: not a linear transformation) 

8. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by  𝑇(𝑥, 𝑦, 𝑧) = (𝑥𝑦, 𝑦𝑧)       (Answer: not a linear transformation) 

9. 𝑻:𝑹𝟐⟶𝑹𝟑 defined by  𝑇(𝑥, 𝑦) = (𝑥, 𝑦, 5)      (Answer: not a linear transformation) 

10. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by  𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 0)     (Answer: linear transformation 
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Program 5 

Program to find the matrix of linear transformation. 

Aim: To find the matrix of given linear transformation with respect to given bases using Mathematics 

Softwares (FOSS). 

Software: Maxima 

Keys:  

 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 
 

Key Function 

. (dot) 

The operator . represents noncommutative multiplication 

and scalar product. It is used for usual multiplication of 

matrices. 

* (asterisk) The operator * represents commutative multiplication 

^  Exponentiation operator or power or index 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

L[i] Returns i-th element of the list L 

' The single quote operator ' prevents evaluation. 

makelist (expr, i, i_0, i_max) 

Returns the list of elements obtained when ev 

(expr, i=j) is applied to the elements j of the 

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or 

equal to |i_max|. 

length (expr) 
Returns the number of parts in the external (displayed) 

form of expr 

:= The function definition operator 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise 

the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 

radicals. 

linsolve (A,B) 
Solves the list of simultaneous linear equations for the list 

A of variables in list B. The expressions must each be 

polynomials in the variables and may be equations. 

transpose (M) Returns the transpose of M. 

assoc (key, e) 
assoc searches for key as the first part of an argument of e 

and returns the second part of the first match, if any. 

apply('matrix,L) Converting nested lists L to matrix 
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Definitions and Formulae: 

Matrix of a Linear Transformation: Let 𝑻:𝑼 → 𝑽 be a linear transformation where 𝑼 is a vector space 

of dimension 𝒏 and 𝑽 is a vector space of dimension 𝒎 . Further, let 𝑩𝟏 = {𝒆𝟏, 𝒆𝟐, … . , 𝒆𝒏} and 𝑩𝟐 =

{𝒇𝟏, 𝒇𝟐, … . , 𝒇𝒎} be ordered bases of 𝑼 and 𝑽 respectively. Then we have, 

𝑻(𝒆𝟏) = 𝒂𝟏𝟏𝒇𝟏 + 𝒂𝟏𝟐𝒇𝟐 + 𝒂𝟏𝟑𝒇𝟑 + … .+𝒂𝟏𝒎𝒇𝒎 

𝑻(𝒆𝟐) = 𝒂𝟐𝟏𝒇𝟏 + 𝒂𝟐𝟐𝒇𝟐 + 𝒂𝟐𝟑𝒇𝟑 + … .+𝒂𝟐𝒎𝒇𝒎 

⋮ 

𝑻(𝒆𝒏) = 𝒂𝒏𝟏𝒇𝟏 + 𝒂𝒏𝟐𝒇𝟐 + 𝒂𝟏𝟑𝒇𝟑 + … .+𝒂𝒏𝒎𝒇𝒎 

These 𝒏 equations form an 𝒎× 𝒏 matrix which is transpose of coefficient matrix. In other words, 

an 𝒎× 𝒏 matrix whose j-th column is the coefficients of j-th equation. This matrix is called the 

matrix of linear transformation 𝑻 and is denoted by [𝑻]. Thus, 

[𝑻] = [

𝑎11 𝑎21 . . . 𝑎𝑚1
𝑎12 𝑎22 . . . 𝑎𝑚2
⋮ ⋮ ⋱ ⋮
𝑎1𝑚 𝑎2𝑚 . . . 𝑎𝑛𝑚

] 

 

Program: 

Program to find the matrix of linear transformation 𝑻:𝑹𝒏 → 𝑹𝒎 with respect to standard bases 

 𝐵1 = {𝒆𝟏, 𝒆𝟐, … . , 𝒆𝒏} and 𝐵2 = {𝒇𝟏, 𝒇𝟐, … . , 𝒇𝒎} 

T(x):= define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

A: ordered standard basis of domain$ 

B: ordered standard basis of co-domain$ 

L:makelist(T(A[i]),i,1,length(A))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix of T w.r.t. given bases is [T]=",M)$ 

 

Note: Take X according to domain and standard basis A of domain and B of codomain as: 

1. X:[x,y] if domain is 𝑅2 and A or B:[[1,0],[0,1]] for domain/codomain 𝑅2 

2. X:[x,y,z] if domain is 𝑅3 and A or B: [[1,0,0],[0,1,0],[0,0,1]] for domain/codomain 𝑅3 

3. X:[w,x,y,z] if domain is 𝑅4 and A or B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1] for 

domain/codomain 𝑅4 so on. 
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Program to find the matrix of linear transformation 𝑻:𝑹𝒏 → 𝑹𝒎 with respect to any bases 

 𝐵1 = {𝒂𝟏, 𝒂, … . , 𝒂𝒏} and 𝐵2 = {𝒃𝟏, 𝒃𝟐, … . , 𝒃𝒎} 

T(x):= define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

A: ordered list of given basis of domain$ 

B: ordered list of given basis of co-domain$ 

a:[α,β]$ 

K:makelist(linsolve(B.a-T(A[i]),a),i,1,length(A))$ 

L:makelist(makelist(assoc(a[i],K[j]),i,1,length(a)),j,1,length(A))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix of T w.r.t. given bases is [T]=",M)$ 
 

Note: 1. X:[x,y,z] and 𝑎:[α,β] is taken for illustration. Take X and 𝑎 according to 

domain and codomain as: 

1. X:[x,y] if domain is 𝑅2, a:[α,β] if co-domain is 𝑅2 

2. X:[x,y,z] if domain is 𝑅3, a:[α,β ,γ] if co-domain is 𝑅3 

3. X:[w,x,y,z] if domain is 𝑅4, a:[α,β ,γ, δ] if co-domain is 𝑅4 and so on. 
 

 

 

Worked Examples: 

 Problem 1. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟑⟶𝑹𝟐 defined by  

𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛) with respect to standard bases. 

Program:  

T(x):=[x[1]+x[2],x[2]+x[3]]$ 

X:[x,y,z]$ 

A:[[1,0,0],[0,1,0],[0,0,1]]$ 

B:[[1,0],[0,1]]$ 

L:makelist(T(A[i]),i,1,length(A))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix of T w.r.t. given bases is [T]=",M)$ 
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Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0,0], [0,1,0], [0,0,1]] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,0], [0,1]] 

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
1 1 0
0 1 1

) 

 

 Problem 2. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟐⟶𝑹𝟑 defined by  

𝑻(𝒙, 𝒚) = (𝟐𝒚 − 𝒙, 𝒚, 𝟑𝒚 − 𝟑𝒙) with respect to standard bases. 

Program:  

T(x):=[2*x[2]-x[1],x[2],3*x[2]-3*x[1]]$  

X:[x,y]$ 

A:[[1,0],[0,1]]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(A[i]),i,1,length(A))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix T w.r.t. given bases is [T]=",M)$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [2𝑦 − 𝑥, 𝑦, 3𝑦 − 3𝑥] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0], [0,1]] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,0,0], [0,1,0], [0,0,1]] 

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
−1 2
0 1
−3 3

) 

 

 

 

 

 

 

 

 

 

 

 

 



 

                         37

 Problem 3. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐 defined by  

𝑻(𝒙, 𝒚) = (𝒙 𝒄𝒐𝒔(𝜽) − 𝒚 𝒔𝒊𝒏(𝜽) , 𝒙 𝒔𝒊𝒏(𝜽) + 𝒚𝒄𝒐𝒔(𝜽)) with respect to standard bases. 

Program:  

T(x):=[x[1]*cos(θ)-x[2]*sin(θ), x[1]*sin(θ)+x[2]*cos(θ)]$ 

X:[x,y]$ 

A:[[1,0],[0,1]]$  

B:[[1,0],[0,1]]$ 

L:makelist(T(A[i]),i,1,length(A))$ 

M:transpose(apply('matrix,L))$  

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix T w.r.t. given bases is [T]=",M)$ 
 

 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑥 cos(𝜃) − 𝑦 sin(𝜃) , 𝑥 sin(𝜃) + 𝑦 cos(𝜃)] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0], [0,1]] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,0], [0,1]] 

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

) 

 Problem 4. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 defined by  

𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝟐𝒚 − 𝒛, 𝒚 + 𝒛, 𝒙 + 𝒚 − 𝟐𝒛) with respect to standard bases. 

Program:  

T(x):=[x[1]+2*x[2]-x[3], x[2]+x[3], x[1]+x[2]-2*x[3]]$ 

X:[x,y,z]$ 

A:[[1,0,0],[0,1,0],[0,0,1]]$  

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(A[i]),i,1,length(A))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix T w.r.t. given bases is [T]=",M)$ 
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Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [−𝑧 + 2𝑦 + 𝑥, 𝑧 + 𝑦,−2𝑧 + 𝑦 + 𝑥] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0,0], [0,1,0], [0,0,1]] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,0,0], [0,1,0], [0,0,1]] 

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
1 2 −1
0 1 1
1 1 −2

) 

 

 Problem 5. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟐⟶𝑹𝟑 defined by  

𝑻(𝒙, 𝒚) = (𝟐𝒚 − 𝒙, 𝒚, 𝟑𝒚 − 𝟑𝒙) with respect to ordered bases of domain and co-domain 

𝑩𝟏 = {(𝟏, 𝟏), (−𝟏, 𝟏)} and 𝑩𝟐 = {(𝟏, 𝟏, 𝟏), (𝟏,−𝟏, 𝟏), (𝟎, 𝟎, 𝟏)}, respectively. 

Program:  

T(x):=[2*x[2]-x[1],x[2],3*x[2]-3*x[1]]$ 

X:[x,y]$ 

A:[[1,1],[-1,1]]$  

B:[[1,1,1],[1,-1,1],[0,0,1]]$ 

a:[α,β,γ]$ 

K:makelist(linsolve(B.a-T(A[i]),a),i,1,length(A))$ 

L:makelist(makelist(assoc(a[i],K[j]),i,1,length(a)),j,1,length(A))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix of T w.r.t. given bases is [T]=",M)$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [2𝑦 − 𝑥, 𝑦, 3𝑦 − 3𝑥] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,1], [−1,1]] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,1,1], [1, −1,1], [0,0,1]] 

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
1 2
0 1
−1 3

) 

 

Problem 6. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐 defined by  

𝑻(𝒙, 𝒚) = (𝒙 + 𝟒𝒚, 𝟐𝒙 − 𝟑𝒚) with respect to ordered bases of domain and co-domain 

𝑩𝟏 = {(𝟏, 𝟎), (𝟎, 𝟏)} and 𝑩𝟐 = {(𝟏, 𝟑), (𝟐, 𝟓)}, respectively. 
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Program:  

T(x):=[x[1]+4*x[2],2*x[1]-3*x[2]]$  

X:[x,y]$ 

A:[[1,0],[0,1]]$ 

B:[[1,3],[2,5]]$ 

a:[α,β]$ 

K:makelist(linsolve(B.a-T(A[i]),a),i,1,length(A))$ 

L:makelist(makelist(assoc(a[i],K[j]),i,1,length(a)),j,1,length(A))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix of T w.r.t. given bases is [T]=",M)$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [4𝑦 + 𝑥, 2𝑥 − 3𝑦] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,0], [0,1]] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,3], [2,5]] 

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] = (
−1 −26
1 15

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 7. Write a program to find the matrix of linear transformation 𝑻:𝑹𝟒⟶𝑹𝟑 defined by  

𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝒘 + 𝒙 + 𝟐𝒚 + 𝟑𝒛,𝒘 + 𝒙 − 𝒛,𝒘 + 𝟐𝒙) with respect to ordered bases 

of domain and co-domain 𝑩𝟏 = {(𝟏, 𝟏, 𝟏, 𝟐), (𝟏, −𝟏, 𝟎, 𝟎), (𝟎, 𝟎, 𝟏, 𝟏), (𝟎, 𝟏, 𝟎, 𝟎)} and 

𝑩𝟐 = {(𝟏, 𝟐, 𝟑), (𝟏, −𝟏, 𝟏), (𝟐, 𝟏, 𝟏)}, respectively. 
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Program:  

T(x):=[x[1]+x[2]+2*x[3]+3*x[4],x[1]+x[2]-x[4],x[1]+2*x[2]]$ 

X:[w,x,y,z]$ 

A:[[1,1,1,2],[1,-1,0,0],[0,0,1,1],[0,1,0,0]]$ 

B:[[1,2,3],[1,-1,1],[2,1,1]]$ 

a:[α,β,γ]$ 

K:makelist(linsolve(B.a-T(A[i]),a),i,1,length(A))$ 

L:makelist(makelist(assoc(a[i],K[j]),i,1,length(a)),j,1,length(A))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$ 

print("Basis of domain is B1=",A)$ 

print("Basis of co-domain is B2=",B)$ 

print("The Matrix of T w.r.t. given bases is [T]=",M)$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [3𝑧 + 2𝑦 + 𝑥 + 𝑤,−𝑧 + 𝑥 + 𝑤, 2𝑥 + 𝑤] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵1 = [[1,1,1,2], [1, −1,0,0], [0,0,1,1], [0,1,0,0]] 

𝐵𝑎𝑠𝑖𝑠 𝑜𝑓 𝑐𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑠 𝐵2 = [[1,2,3], [1, −1,1], [2,1,1]] 

𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑤. 𝑟. 𝑡. 𝑔𝑖𝑣𝑒𝑛 𝑏𝑎𝑠𝑒𝑠 𝑖𝑠 [𝑇] =

(
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11
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−
1

3
−
11
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9
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9
−
1

3

10

9

2

9
41

9

1

3

23

9

1

9)
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Exercise: 

I. Write a program to find the matrix of given linear transformation with respect to standard bases. 

 

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙,−𝒚)  (Answer: (
1 0
0 −1

)) 

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒚,−𝒙, 𝒛)  (Answer: (
0 1 0
−1 0 0
0 0 1

)) 

3. 𝑻:𝑹𝟐⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (−𝒙 + 𝟐𝒚, 𝒚,−𝟑𝒙 + 𝟑𝒚)  (Answer: (
−1 2
0 1
−3 3

)) 

4. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒛 − 𝟐𝒚, 𝒙 + 𝟐𝒚 − 𝒛)  (Answer: (
0 −2 1
1 2 −1

)) 

 

 

II. Write a program to find the matrix of given linear transformation with respect to given bases. 

 

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙,−𝒚)  with respect to bases 

𝑩𝟏 = {(𝟏, 𝟏), (𝟏, 𝟎)} and 𝑩𝟐 = {(𝟐, 𝟑), (𝟒, 𝟓)}          (Answer: (
−
9

2
−
5

2
5

2

3

2

)) 

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒚,−𝒙, 𝒛) with respect to bases 

𝑩𝟏 = 𝑩𝟐 = {(𝟏, 𝟏, 𝟎), (𝟎, 𝟏, 𝟏), (𝟏, 𝟎, 𝟏)}         (Answer: (
0 0 −1
−1 0 0
1 1 1

)) 

3. 𝑻:𝑹𝟐⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (−𝒙 + 𝟐𝒚, 𝒚,−𝟑𝒙 + 𝟑𝒚) with respect to bases 

𝑩𝟏 = {(𝟏, 𝟐), (−𝟐, 𝟏)} and 𝑩𝟐 = {(−𝟏, 𝟎, 𝟐), (𝟏, 𝟐, 𝟑), (𝟏,−𝟏,−𝟏)}  (Answer: 

(

 
 
−
2

7

19

7
11

7

18

7
8

7

29

7)

 
 

) 

4. 𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒛 − 𝟐𝒚, 𝒙 + 𝟐𝒚 − 𝒛) with respect to bases 

𝑩𝟏 = {(𝟏, 𝟐, 𝟑), (𝟏,−𝟏, 𝟏), (𝟐, 𝟏, 𝟏)} and 𝑩𝟐 = {(𝟐, 𝟏), (−𝟑, 𝟒)} (Answer: (

2

11

6

11

5

11
5

11
−

7

11

7

11

)) 
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Program 6 

Program to find the Eigenvalues and Eigenvectors 

 of a given linear transformation. 
 

Aim: To find the Eigenvalues and Eigenvectors of a given linear transformation / matrix using 

Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

Key Function 

. (dot) 
The operator . represents noncommutative multiplication and 

scalar product. It is used for usual multiplication of matrices. 

* (asterisk) The operator * represents commutative multiplication 

^  Exponentiation operator or power or index 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

L[i] Returns i-th element of the list L 

' The single quote operator ' prevents evaluation. 

makelist (expr, i, i_0, i_max) 

Returns the list of elements obtained when ev (expr, i=j) is 

applied to the elements j of the sequence: i_0, i_0 + 1, i_0 + 2, 

..., with |j| less than or equal to |i_max|. 

length (expr) 
Returns the number of parts in the external (displayed) form 

of expr 

:= The function definition operator 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise the 

expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 

transpose (M) Returns the transpose of M. 

apply('matrix,L) Converting nested lists L to matrix 

reverse (list) 
Reverses the order of the members of the list (not the members 

themselves) 

table_form() 

Displays a 2D list in a form that is more readable than the 

output from Maxima’s default output routine. The input is a list 

of one or more lists. 

push (item, list) 
push prepends the item item to the list list and returns a copy 

of the new list. 

eigenvalues (M) or eivals (M) 

Returns a list of two lists containing the eigenvalues of the 

matrix M. The first sublist of the return value is the list of 

eigenvalues of the matrix, and the second sublist is the list of 

the multiplicities of the eigenvalues in the corresponding 

order. 
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Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 
 

Definitions and Formulae: 

Eigen value and Eigen vector of a Linear transformation: Let 𝑽 be a vector space over a field 

𝑭 and  𝑻: 𝑽 ⟶ 𝑽 be a linear transformation. A scalar 𝝀 ∈ 𝑭 is called an eigen value / characteristic 

value of 𝑻 if 𝑻(𝒗) = 𝝀𝒗  for some non-zero vector 𝒗 ∈ 𝑽. Then 𝒗 is called an eigen vector / 

characteristic vector corresponding to the eigen value 𝝀. 

Similarly, a non-zero vector 𝒗 ∈ 𝑽 is called an eigen vector / characteristic vector of 𝑻 if 𝑻(𝒗) =

𝝀𝒗  for some scalar 𝝀 ∈ 𝑭. Then 𝝀 ∈ 𝑭 is called an eigen value / characteristic value corresponding 

to the eigen vector 𝒗. 

Properties of eigen values and eigen vectors: 

1. The number of distinct eigen values of a linear transformation of a vector space of dimension n 

is at most n. 

2. An eigen value of a linear transformation may be repeated. The number of times an eigen value 

is repeated is called its algebraic multiplicity. 

3. A non-repeated eigen value can have only one linearly independent eigen vector. 

4. A repeated eigen value can have one or more linearly independent eigen vectors. The number 

of linearly independent eigen vectors of an eigen value is called its geometric multiplicity. For 

any eigen value: geometric multiplicity ≤ algebraic multiplicity.  

5. Geometric multiplicity of an eigen value is the dimension of its eigen space. 

6. An eigen value is called defective if its geometric multiplicity < algebraic multiplicity 

7. A linear transformation is diagonalizable if all its eigen values are non-defective. In other words, 

all eigen values have their geometric multiplicity = their algebraic multiplicity. In this case 

corresponding eigen vectors form a basis of the vector space. 

8. 0 ∈ 𝑭, scalar zero can be an eigen value, but 𝟎 ∈ 𝑽, zero vector can never be an eigen vector. 

 

eigenvectors (M) or  eivects (M) 

Computes eigenvectors of the matrix M. The return value is a 

list of two elements. The first is a list of the eigenvalues 

of M and a list of the multiplicities of the eigenvalues. The 

second is a list of lists of eigenvectors. There is one list of 

eigenvectors for each eigenvalue. There may be one or more 

eigenvectors in each list. 
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Program: 

Program to find the eigen values and eigen vectors of a linear transformation 𝑻: 𝑹𝒏⟶ 𝑹𝒏 

 

T(x):= define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

B:Standard basis of given vector space$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

table_form(reverse(N))$ 
 

 

Note: 1. Here X:[x,y,z] is taken for illustration purpose. 

          Take X:[x,y] if domain is 𝑅2,  X:[x,y,z] if domain is 𝑅3, 

          X:[w,x,y,z] if domain is 𝑅4and so on. 
 

     2. Take standard basis as: B:[[1,0],[0,1]] for 𝑅2,  B:[[1,0,0],[0,1,0],[0,0,1]] for 𝑅3, 

B: [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on. 

 

Program to find the eigen values and eigen vectors of a matrix 

 

M:matrix([R1],[R2],…[Rn])$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Matrix is M=",M)$ 

table_form(reverse(N))$ 
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Worked Examples: 

Problem 1. Write a program to find the eigen values and eigen vectors of the linear transformation 

 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟒𝒚 + 𝒙, 𝟑𝒚 + 𝟐𝒙) 

Program:  

T(x):=[x[1]+4*x[2],2*x[1]+3*x[2]]$  

X:[x,y]$ 

B:[[1,0],[0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [4𝑦 + 𝑥, 3𝑦 + 2𝑥]  

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 5 1 {[1,1]}

𝜆2 = −1 1 {[1, −
1

2
]}

 

 

Problem 2. Write a program to find the eigen values and eigen vectors of the linear transformation 

 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒚, 𝟎) 

Program:  

T(x):=[x[2],0]$  

X:[x,y]$ 

B:[[1,0],[0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$ 
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N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑦, 0] 

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 2 {[1,0]}

 

 

Problem 3. Write a program to find the eigen values and eigen vectors of the linear transformation 

 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟐𝒙 + 𝟐𝒚 + 𝒛, 𝒙 + 𝟑𝒚 + 𝒛, 𝒙 + 𝟐𝒚 + 𝟐𝒛) 

Program:  

T(x):=[2*x[1]+2*x[2]+x[3],x[1]+3*x[2]+x[3],x[1]+2*x[2]+2*x[3]]$ 

X:[x,y,z]$  

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑧 + 2𝑦 + 2𝑥, 𝑧 + 3𝑦 + 𝑥, 2𝑧 + 2𝑦 + 𝑥] 

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 5 1 {[1,1,1]}
𝜆2 = 1 2 {[0,1, −2], [1,0, −1]}
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Problem 4. Write a program to find the eigen values and eigen vectors of the linear transformation 

 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎, 𝒙, 𝒚, 𝒛) 

Program:  

T(x):=[0,x[2],x[3],x[4]]$ 

X:[w,x,y,z]$ 

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑥, 𝑦, 𝑧] 

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 1 {[1,0,0,0]}
𝜆2 = 1 3 {[0,0,0,1], [0,0,1,0], [0,1,0,0]}

 

Problem 5. Write a program to find the eigen values and eigen vectors of the matrix 𝑀 = (
1 2 3
2 1 0
−1 0 1

) 

Program:  

M:matrix([1,2,3],[2,1,0],[-1,0,1])$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$  

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Matrix is M=",M)$ 

table_form(reverse(N))$  
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Output: 

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
1 2 3
2 1 0
−1 0 1

) 

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝜆1 = 1 1 {[0,1, −
2

3
]}

𝜆2 = 2 1 {[1,2, −1]}
𝜆3 = 0 1 {[1, −2,1]}

  

Problem 6. Write a program to find the eigen values and eigen vectors of the matrix 𝑀 = (

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

) 

Program:  

M:matrix([0,1,0,0],[0,0,2,0],[0,0,0,3],[0,0,0,0])$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Matrix is M=",M)$ 

table_form(reverse(N))$ 

 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

) 

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 4 {[1,0,0,0]}
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Exercise: 

 
I. Write a program to find the eigen values and eigen vectors of the given linear transformation 

1.  𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟑𝒙 + 𝒚, 𝟔𝒙 + 𝟐𝒚)  (Answer: 𝜆1 = 0, 𝜆2 = 5) 

2.  𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝟐𝒙 + 𝒚, 𝟑𝒙 + 𝟐𝒚) (Answer: 𝜆1 = 0, 𝜆2 = 1(twice repeated)) 

3.  𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟓𝒙 − 𝟔𝒚 − 𝟔𝒛,−𝒙 + 𝟒𝒚 + 𝟐𝒛, 𝟑𝒙 − 𝟔𝒚 − 𝟒𝒛) 

(Answer: 𝜆1 = 1, 𝜆2 = 2 (twice repeated)) 

4.  𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 − 𝒚 + 𝟐𝒛, 𝒚, 𝒙 + 𝟐𝒚 + 𝒛) 

(Answer: 𝜆1 = 1, 𝜆2 = 1 + √2, 𝜆3 = 1 − √2) 

5.  𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎,𝒘, 𝒙, 𝒚)  (Answer: 𝜆1 = 0 (repeated 4 times)) 

II. Write a program to find the eigen values and eigen vectors of the given matrix 

1.  𝑴 = (
1 2
0 3

)   (Answer: 𝜆1 = 1, 𝜆2 = 3) 

 

2.  𝑴 = (
1 0 0
0 2 0
0 0 3

)    (Answer: 𝜆1 = 1, 𝜆2 = 2, 𝜆3 = 3) 

 

3.  𝑴 = (
0 0 2
1 0 1
0 1 −2

)   (Answer: 𝜆1 = −2, 𝜆2 = −1, 𝜆3 = 1) 

 

4.  𝑴 = (
0 1 0
1 0 0
0 0 1

)    (Answer: 𝜆1 = −1 , 𝜆2 = 1 (𝑡𝑤𝑖𝑐𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑) ) 

 

5.  𝑴 = (

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

)  (Answer: 𝜆1 = 1 (𝑡𝑤𝑖𝑐𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑), 𝜆2 = 0 (𝑡𝑤𝑖𝑐𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑) )
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Program 7 

Program on Rank – Nullity Theorem. 

Aim: To verify Rank – Nullity theorem for given linear transformation / matrix using 

Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 
 

Key Function 

. (dot) 

The operator . represents noncommutative multiplication 

and scalar product. It is used for usual multiplication of 

matrices. 

* (asterisk) The operator * represents commutative multiplication 

^  Exponentiation operator or power or index 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

L[i] Returns i-th element of the list L 

' The single quote operator ' prevents evaluation. 

and  The logical conjunction operator 

length (expr) 
Returns the number of parts in the external (displayed) 

form of expr 

:= The function definition operator 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise 

the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 

transpose (M) Returns the transpose of M. 

apply('matrix,L) Converting nested lists L to matrix 

matrix_size (M) 
Return a two-member list that gives the number of rows 

and columns, respectively of the matrix M. 

columnspace (M) 
If M is a matrix, return span (v_1, ..., v_n), where the 

set {v_1, ..., v_n} is a basis for the column space of M.  

rank (M) Computes the rank of the matrix M.  

nullspace (M) 
If M is a matrix, return span (v_1, ..., v_n), where the 

set {v_1, ..., v_n} is a basis for the nullspace of M 

nullity (M) 
If M is a matrix, return the dimension of the nullspace 

of M. 
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Definitions and Formulae: 

Range / Range space and rank of a Linear transformation: Let 𝑼 and 𝑽 be vector spaces over a 

field 𝑭 and  𝑻:𝑼 ⟶ 𝑽 be a linear transformation. The range of 𝑻 is the set 𝑹(𝑻) =

{𝑻(𝒖) ∈ 𝑽 |𝒖 ∈ 𝑼 }. Clearly, the range or range space 𝑹(𝑻) of 𝑻 is a subspace of codomain 𝑽 and 

the dimension of 𝑹(𝑻)  is called the rank of 𝑻 and is denoted by 𝒓𝒂𝒏𝒌(𝑻) or 𝒓(𝑻). 

Kernel / Null space and nullity of a Linear transformation: Let 𝑼 and 𝑽 be vector spaces over a 

field 𝑭 and  𝑻:𝑼 ⟶ 𝑽 be a linear transformation. The kernel / null space of 𝑻 is the set 𝑵(𝑻) =

{ 𝒖 ∈ 𝑼 | 𝑻(𝒖) = 𝟎 ∈ 𝑽}. Clearly, the kernel or null space 𝑵(𝑻) of 𝑻 is a subspace of domain 𝑼 

and the dimension of 𝑵(𝑻)  is called the nullity of 𝑻 and is denoted by 𝒏𝒖𝒍𝒍𝒊𝒕𝒚(𝑻) or 𝒏(𝑻). 

Rank - Nullity Theorem for a linear transformation: Let 𝑼 and 𝑽 be vector spaces over a field 𝑭 

and  𝑻:𝑼 ⟶ 𝑽 be a linear transformation. Suppose 𝑼 is finite dimensional of dimension 𝒏. Then, 

𝒓𝒂𝒏𝒌(𝑻) + 𝒏𝒖𝒍𝒍𝒊𝒕𝒚 (𝑻) = 𝒅𝒊𝒎(𝑼)             𝒊. 𝒆. ,      𝒓(𝑻) + 𝒏(𝑻) = 𝒏 

i.e., the sum of rank and nullity of a linear transformation is equal to the dimension of its domain. 

It is also called Rank-Nullity-Dimension theorem. 

Rank - Nullity Theorem for a matrix: Let 𝑨 be an 𝒎× 𝒏 matrix. Then the number of columns of 

𝑨 is the sum of the rank of 𝑨 and the nullity of 𝑨. That is, 

𝒓𝒂𝒏𝒌(𝑨) + 𝒏𝒖𝒍𝒍𝒊𝒕𝒚 (𝑨) = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒍𝒖𝒎𝒏𝒔      𝒊. 𝒆., 𝒓(𝑻) + 𝒏(𝑻) = 𝒏 
 

Program: 

Program to verify rank-nullity theorem for a matrix M 

M:matrix([R1],[R2],[R3],…[Rm])$ 

n:matrix_size (M)[2]$ 

print("Given Matrix is M=",M)$ 

print("Range Space of M=",columnspace(M))$ 

print("Null Space of M=",nullspace(M))$ 

print("Rank of M=",rank(M))$ 

print("Nullity of M=",nullity(M))$ 

print("r(M)+n(M)=",rank(M)+nullity(M))$ 

print("Number of columns of M=",n)$ 

if rank(M)+nullity(M)=n then 

print("Rank + Nullity = Number of columns") and 

print("Rank - Nullity theorem is verified") else 

print("Rank + Nullity ≠ Number of columns") and 

print("Rank - Nullity theorem is not verified")$ 
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Program to verify rank-nullity theorem for a linear transformation 𝑻:𝑼 ⟶ 𝑽 

T(x):= define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

B: Standard ordered basis of domain$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

n:matrix_size (M)[2]$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Range Space of T=",columnspace(M))$ 

print("Null Space of T=",nullspace(M))$ 

print("Rank of T=",rank(M))$ 

print("Nullity of T=",nullity(M))$ 

print("r(T)+n(T)=",rank(M)+nullity(M))$ 

print("Dimension of Domain=",n)$ 

if rank(M)+nullity(M)=n then 

print("Rank + Nullity = Dimension of domain") and 

print("Rank - Nullity theorem is verified") else 

print("Rank + Nullity ≠ Dimension of Domain") and 

print("Rank - Nullity theorem is not verified")$ 

 

Note: 1.  In the above program X:[x,y,z] is taken for illustration. 

  Take X:[x,y] if 𝑈 = 𝑅2, X:[x,y,z] if 𝑈 = 𝑅3, X:[w,x,y,z] if 𝑈 = 𝑅4 and so on. 

2. Take standard bases as: 

 [[1,0],[0,1]] for 𝑅2 

  [[1,0,0],[0,1,0],[0,0,1]] for 𝑅3 

 [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on. 
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Worked Examples: 

 Problem 1. Write a program to verify rank-nullity theorem for a linear transformation 𝑻:𝑹𝟑⟶𝑹𝟐 

defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛) 

Program:  

T(x):=[x[1]+x[2], x[2]+x[3]]$ 

X:[x,y,z]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

n:matrix_size (M)[2]$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Range Space of T=",columnspace(M))$ 

print("Null Space of T=",nullspace(M))$ 

print("Rank of T=",rank(M))$ 

print("Nullity of T=",nullity(M))$ 

print("r(T)+n(T)=",rank(M)+nullity(M))$ 

print("Dimension of Domain=",n)$ 

if rank(M)+nullity(M)=n then 

print("Rank + Nullity = Dimension of domain") and 

print("Rank - Nullity theorem is verified") else 

print("Rank + Nullity ≠ Dimension of Domain") and 

print("Rank - Nullity theorem is not verified")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦] 

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
1
0
) , (

1
1
)) 

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
−1
1
−1
)) 

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑇 = 2 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 1 

𝑟(𝑇) + 𝑛(𝑇) = 3 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛 = 3 

𝑅𝑎𝑛𝑘 +  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 =  𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 

𝑅𝑎𝑛𝑘 −  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 
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 Problem 2. Write a program to verify rank-nullity theorem for a linear transformation 𝑻:𝑹𝟑⟶𝑹𝟒 

defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟎, 𝒙 + 𝒚 + 𝒛, 𝒚 − 𝒛, 𝟐𝒙 + 𝟒𝒛) 

Program:  

T(x):=[0,x[1]+x[2]+x[3], x[2]-x[3], 2*x[1]+4*x[3]]$  

X:[x,y,z]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

n:matrix_size (M)[2]$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Range Space of T=",columnspace(M))$ 

print("Null Space of T=",nullspace(M))$ 

print("Rank of T=",rank(M))$ 

print("Nullity of T=",nullity(M))$ 

print("r(T)+n(T)=",rank(M)+nullity(M))$ 

print("Dimension of Domain=",n)$ 

if rank(M)+nullity(M)=n then 

print("Rank + Nullity = Dimension of domain") and 

print("Rank - Nullity theorem is verified") else 

print("Rank + Nullity ≠ Dimension of Domain") and 

print("Rank - Nullity theorem is not verified")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [0, 𝑧 + 𝑦 + 𝑥, 𝑦 − 𝑧, 4𝑧 + 2𝑥] 

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span

(

 
 
(

0
1
0
2

) ,(

0
1
1
0

)

)

 
 

 

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
−2
1
1
)) 

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑇 = 2 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 1 

𝑟(𝑇) + 𝑛(𝑇) = 3 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛 = 3 

𝑅𝑎𝑛𝑘 +  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 =  𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 

𝑅𝑎𝑛𝑘 −  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 
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 Problem 3. Write a program to verify rank-nullity theorem for a linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 

defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒙 − 𝒚, 𝟐𝒙 + 𝒛) 

Program:  

T(x):=[0,x[1]+x[2]+x[3], x[2]-x[3], 2*x[1]+4*x[3]]$  

X:[x,y,z]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

n:matrix_size (M)[2]$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Range Space of T=",columnspace(M))$ 

print("Null Space of T=",nullspace(M))$ 

print("Rank of T=",rank(M))$ 

print("Nullity of T=",nullity(M))$ 

print("r(T)+n(T)=",rank(M)+nullity(M))$ 

print("Dimension of Domain=",n)$ 

if rank(M)+nullity(M)=n then 

print("Rank + Nullity = Dimension of domain") and 

print("Rank - Nullity theorem is verified") else 

print("Rank + Nullity ≠ Dimension of Domain") and 

print("Rank - Nullity theorem is not verified")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑥 − 𝑦, 𝑧 + 2𝑥] 

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
0
0
1
) , (

1
−1
0
) , (

1
1
2
)) 

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span(? ) 

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑇 = 3 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0 

𝑟(𝑇) + 𝑛(𝑇) = 3 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛 = 3 

𝑅𝑎𝑛𝑘 +  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 =  𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 

𝑅𝑎𝑛𝑘 −  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 

 

Note: span(? ) means span ( ) i.e., span of the empty set and span(? ) = span(𝜙) = {0} 
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Problem 4. Write a program to verify rank-nullity theorem for a linear transformation 𝑻:𝑹𝟐⟶𝑹𝟑 

defined by 𝑻(𝒙, 𝒚) = (−𝒙 + 𝟐𝒚, 𝒚,−𝟑𝒙 + 𝟑𝒚) 

Program:  

T(x):=[-x[1]+2*x[2] ,x[2],-3*x[1]+3*x[2]]$ 

X:[x,y]$ 

B:[[1,0],[0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

n:matrix_size (M)[2]$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Range Space of T=",columnspace(M))$ 

print("Null Space of T=",nullspace(M))$ 

print("Rank of T=",rank(M))$ 

print("Nullity of T=",nullity(M))$ 

print("r(T)+n(T)=",rank(M)+nullity(M))$ 

print("Dimension of Domain=",n)$ 

if rank(M)+nullity(M)=n then 

print("Rank + Nullity = Dimension of domain") and 

print("Rank - Nullity theorem is verified") else 

print("Rank + Nullity ≠ Dimension of Domain") and 

print("Rank - Nullity theorem is not verified")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [2𝑦 − 𝑥, 𝑦, 3𝑦 − 3𝑥] 

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span((
−1
0
−3
) , (

2
1
3
)) 

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇 = span(? ) 

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑇 = 2 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0 

𝑟(𝑇) + 𝑛(𝑇) = 2 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛 = 2 

𝑅𝑎𝑛𝑘 +  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 =  𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 

𝑅𝑎𝑛𝑘 −  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 

 

Note: span(? ) means span ( ) i.e., span of the empty set and span(? ) = span(𝜙) = {0} 
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Problem 5. Write a program to verify rank-nullity theorem for the matrix 𝑀 = (

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

) 

Program:  

M:matrix([1,1,0,0],[-1,-1,0,0],[-2,-2,2,1],[1,1,-1,0])$ 

n:matrix_size (M)[2]$ 

print("Given Matrix is M=",M)$ 

print("Range Space of M=",columnspace(M))$ 

print("Null Space of M=",nullspace(M))$ 

print("Rank of M=",rank(M))$ 

print("Nullity of M=",nullity(M))$ 

print("r(M)+n(M)=",rank(M)+nullity(M))$ 

print("Number of columns of M=",n)$ 

if rank(M)+nullity(M)=n then 

print("Rank + Nullity = Number of columns") and 

print("Rank - Nullity theorem is verified") else 

print("Rank + Nullity ≠ Number of columns") and 

print("Rank - Nullity theorem is not verified")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

) 

𝑅𝑎𝑛𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑀 = span

(

 
 
(

0
0
1
0

) , (

0
0
2
−1

) ,(

1
−1
−2
1

)

)

 
 

 

𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑀 = span

(

 
 
(

1
−1
0
0

)

)

 
 

 

𝑅𝑎𝑛𝑘 𝑜𝑓 𝑀 = 3 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑀 = 1 

𝑟(𝑀) + 𝑛(𝑀) = 4 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝑀 = 4 

𝑅𝑎𝑛𝑘 +  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

𝑅𝑎𝑛𝑘 −  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑖𝑠 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 
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Exercise: 

 

I. Write a program to verify rank-nullity theorem for the following linear transformations 

1.  𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟑𝒙 + 𝒚, 𝟔𝒙 + 𝟐𝒚)  (Ans: Rank-Nullity Theorem is verified) 

2.  𝑻:𝑹𝟐⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (𝒙, 𝒙 + 𝒚, 𝒚)  (Ans: Rank-Nullity Theorem is verified) 

3.  𝑻:𝑹𝟑⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟑𝒙 − 𝟐𝒚 + 𝒛, 𝒙 − 𝟑𝒚 − 𝟐𝒛)  

(Ans: Rank-Nullity Theorem is verified) 

4.  𝑻:𝑹𝟑⟶𝑹𝟒 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙,   𝒙 + 𝒚,   𝒙 + 𝒚 + 𝒛, 𝒛)  
(Ans: Rank-Nullity Theorem is verified) 

5.  𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎,𝒘, 𝒙, 𝒚)  (Ans: Rank-Nullity Theorem is verified) 

II. Write a program to verify rank-nullity theorem for the following matrices 

1.  𝑴 = (
1 2
0 3

)      (Ans: Rank-Nullity Theorem is verified) 

 

2.  𝑴 = (
0 1 0 4 5
0 1 0 4 5

)    (Ans: Rank-Nullity Theorem is verified) 

 

3.  𝑴 = (

1 1
2 2
4 4
5 5

)       (Ans: Rank-Nullity Theorem is verified) 

 

4.  𝑴 = (
1 1 0
0 1 1
1 1 1

)       (Ans: Rank-Nullity Theorem is verified) 

 

5.  𝑴 = (

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

)     (Ans: Rank-Nullity Theorem is verified)
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Program 8 

Program to verify if the given linear transformation is 

 singular/non-singular. 

Aim: To verify if the given linear transformation is singular / non-singular using 

Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 
 

Key Function 

* (asterisk) The operator * represents commutative multiplication 

^  Exponentiation operator or power or index 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

L[i] Returns i-th element of the list L 

' The single quote operator ' prevents evaluation. 

and  The logical conjunction operator 

length (expr) Returns the number of parts in the external (displayed) form of expr 

:= The function definition operator 

if cond_1 then expr_1 

 else expr_0  

evaluates to expr_1 if cond_1 evaluates to true, otherwise the 

expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and displays 

expr 

transpose (M) Returns the transpose of M. 

apply('matrix,L) Converting nested lists L to matrix 

columnspace (M) 
If M is a matrix, return span (v_1, ..., v_n), where the set {v_1, ..., 

v_n} is a basis for the column space of M.  

rank (M) Computes the rank of the matrix M.  

nullspace (M) 
If M is a matrix, return span (v_1, ..., v_n), where the set {v_1, ..., 

v_n} is a basis for the nullspace of M 

nullity (M) If M is a matrix, return the dimension of the nullspace of M. 
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Definitions and Formulae: 

Non-Singular Linear Transformation: Let 𝑼 and 𝑽 be vector spaces over a field 𝑭 and  𝑻:𝑼 ⟶

𝑽 be a linear transformation. Then 𝑻 is called a non-singular transformation if  𝑻(𝒖) = 𝟎 ∈ 𝑽 ⟹

𝒖 = 𝟎 ∈ 𝑼. In other words, 𝑻 is non-singular if it maps no non-zero vector of domain to zero vector 

of codomain. The only vector that is mapped to zero vector of codomain is the zero vector of 

domain. Clearly, 𝑻 is non-singular if and only if 𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑻 = 𝑵(𝑻) = {𝟎} and 

𝒏𝒖𝒍𝒍𝒊𝒕𝒚(𝑻) = 𝟎. As a result, Non-singular transformation is one-one. 

 

Singular Linear Transformation: Let 𝑼 and 𝑽 be vector spaces over a field 𝑭 and  𝑻:𝑼 ⟶ 𝑽 be 

a linear transformation. Then 𝑻 is called a singular transformation if  ∃ 𝒖 ≠ 𝟎 ∈ 𝑼 such that 𝑻(𝒖) =

𝟎 ∈ 𝑽. In other words, 𝑻 is singular if it maps at least one non-zero vector of domain to the zero 

vector of codomain. Clearly, 𝑻 is singular if and only if 𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑻 = 𝑵(𝑻) ≠ {𝟎} and 

𝒏𝒖𝒍𝒍𝒊𝒕𝒚(𝑻) ≥ 𝟏. 

 

Program: 

Program to verify if the given linear transformation is singular / non-singular. 

T(x):= define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

B:Standard ordered basis of domain$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Nullity of T=",nullity(M))$ 

if nullity(M)=0 then 

print("Given linear transformation is Non Singular") else 

print("Given linear transformation is Singular")$ 

 

Note: 1.  In the above program X:[x,y,z] is taken for illustration. 

  Take X:[x,y] if 𝑈 = 𝑅2, X:[x,y,z] if 𝑈 = 𝑅3, X:[w,x,y,z] if 𝑈 = 𝑅4 and so on. 

2. Take standard basis as: [[1,0],[0,1]] for 𝑅2,  [[1,0,0],[0,1,0],[0,0,1]] for 𝑅3 

 [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on. 
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Worked Examples: 

Problem 1. Write a program to verify whether the linear transformation 𝑻:𝑹𝟐⟶𝑹𝟑  

        defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝒚, 𝒙 − 𝒚, 𝒚) is singular / non-singular  

Program:  

T(x):=[x[1]+x[2],x[1]-x[2],x[2]]$ 

X:[x,y]$  

B:[[1,0],[0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Nullity of T=",nullity(M))$ 

if nullity(M)=0 then 

print("Given linear transformation is Non Singular") else 

print("Given linear transformation is Singular")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑦 + 𝑥, 𝑥 − 𝑦, 𝑦] 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0 

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 

Problem 2. Write a program to verify whether the linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐  

        defined by 𝑻(𝒙, 𝒚) = (𝟎, 𝟎) is singular / non-singular  

Program:  

T(x):=[0, 0]$  

X:[x,y]$ 

B:[[1,0],[0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Nullity of T=",nullity(M))$ 

if nullity(M)=0 then 

print("Given linear transformation is Non Singular") else 

print("Given linear transformation is Singular")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [0, 0] 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 2 

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 
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Problem 3. Write a program to verify whether the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑  

        defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛) is singular / non-singular  

Program:  

T(x):=[x[1],x[2],x[3]]$ 

X:[x,y,z]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Nullity of T=",nullity(M))$ 

if nullity(M)=0 then 

print("Given linear transformation is Non Singular") else 

print("Given linear transformation is Singular")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑥, 𝑦, 𝑧] 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0 

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 

Problem 4. Write a program to verify whether the linear transformation 𝑻:𝑹𝟒⟶𝑹𝟒  

        defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎, 𝒙, 𝒚, 𝒛) is singular / non-singular  

Program:  

T(x):=[0,x[2],x[3],x[4]]$ 

X:[w,x,y,z]$ 

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$ 

print("Nullity of T=",nullity(M))$ 

if nullity(M)=0 then 

print("Given linear transformation is Non Singular") else 

print("Given linear transformation is Singular")$ 
 

 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑥, 𝑦, 𝑧] 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 1 

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 
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Problem 5. Write a program to verify whether the linear transformation 𝑻:𝑹𝟒⟶𝑹𝟐  

        defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝒘 + 𝒙, 𝒚 + 𝒛) is singular / non-singular  

Program:  

T(x):=[x[1]+x[2],x[3]+x[4]]$  

X:[w,x,y,z]$ 

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$ 

print("Nullity of T=",nullity(M))$ 

if nullity(M)=0 then 

print("Given linear transformation is Non Singular") else 

print("Given linear transformation is Singular")$ 
 

 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [𝑥 + 𝑤, 𝑧 + 𝑦] 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 2 

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 

Problem 6. Write a program to verify whether the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑  

        defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛, 𝒛 + 𝒙) is singular / non-singular  

Program:  

T(x):=[x[1]+x[2], x[2]+x[3], x[3]+x[1]]$  

X:[x,y,z]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Nullity of T=",nullity(M))$ 

if nullity(M)=0 then 

print("Given linear transformation is Non Singular") else 

print("Given linear transformation is Singular")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦, 𝑧 + 𝑥] 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇 = 0 

𝐺𝑖𝑣𝑒𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 
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Exercise: 

Write a program to verify if the given linear transformation is singular / non-singular  

1. 𝑻:𝑹𝟐 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙, 𝒚)     

(Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

2. 𝑻:𝑹𝟒 ⟶ 𝑹𝟑 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟐𝒘, 𝒙, 𝒚 + 𝒛)   

(Answer:  𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

3. 𝑻:𝑹𝟑 ⟶ 𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒛,−𝒙 + 𝟐𝒚 + 𝒛, 𝒚 + 𝒛)      

(Answer: 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

4. 𝑻:𝑹𝟑 ⟶ 𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (−𝟐𝒛 + 𝒚 + 𝒙, 𝒛 + 𝟐𝒚 + 𝒙,−𝟑𝒛 + 𝟐𝒚 + 𝟐𝒙)  

 (Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

5. 𝑻:𝑹𝟑 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛)   

(Answer:  𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

6. 𝑻:𝑹𝟐 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝒚, 𝒙 − 𝒚)   

(Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

7. 𝑻:𝑹𝟐 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = ( 𝒚, 𝒙)     

(Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

8. 𝑻:𝑹𝟐 ⟶ 𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝟐𝒚, 𝟎)    

(Answer:  𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

9. 𝑻:𝑹𝟐 ⟶ 𝑹 defined by 𝑻(𝒙, 𝒚) = 𝒙 +  𝒚     

(Answer: 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 

10. 𝑻:𝑹𝟐 ⟶ 𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (𝒙, 𝒚, 𝒙 + 𝒚)     

(Answer: 𝑁𝑜𝑛 𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟) 
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Program 9 

Program to find the minimal polynomial of given linear transformation. 
 

Aim: To find the minimal polynomial of given linear transformation / matrix using 

Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

 

Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 
 

 

Key Function 

load("diag") Loads Package diag.  

* (asterisk) The operator * represents commutative multiplication 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

L[i] Returns i-th element of the list L 

' The single quote operator ' prevents evaluation. 

and  The logical conjunction operator 

length (expr) 
Returns the number of parts in the external (displayed) form 

of expr 

:= The function definition operator 

if cond_1 then expr_1 

 else expr_0  

evaluates to expr_1 if cond_1 evaluates to true, otherwise the 

expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and displays 

expr 

transpose (M) Returns the transpose of M. 

apply('matrix,L) Converting nested lists L to matrix 

 expand (expr) Expand expression expr. 

 factor (expr) 
Factors the expression expr, containing any number of variables 

or functions, into factors irreducible over the integers 

charpoly (M, x) 
Returns the characteristic polynomial for the matrix M with 

respect to variable x. 

minimalPoly (l) 
Returns the minimal polynomial of the matrix whose Jordan 

form is described by the list l.  

jordan (mat) 
Returns the Jordan form of matrix mat, encoded as a list in a 

particular format. 

file:///C:/maxima-5.46.0/share/maxima/5.46.0/doc/html/maxima_single .html%23Category_003a-Package-diag
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Definitions and Formulae: 

 

Characteristic Polynomial of a matrix / linear transformation: Let 𝑀 be an 𝑛 × 𝑛 matrix. 𝑓(𝜆) =

det(𝑀 − 𝜆𝐼) is a polynomial in 𝜆 of degree 𝑛 and is called the Characteristic Polynomial of 𝑀 and 

𝑓(𝜆) = 0 is called the Characteristic Equation. By Cayley-Hamilton Theorem, every square matrix 

satisfies its characteristic equation i.e., 𝑓(𝑀) = 0. The characteristic polynomial /equation of a linear 

transformation 𝑇:𝑈 → 𝑈 is the characteristic polynomial/equation of its associated matrix. The roots 

of the characteristic equation of a matrix/linear transformation are precisely its eigen values. 

 

Monic Polynomial: A monic polynomial is a non-zero univariate polynomial (that is, a polynomial in 

a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal 

to 1. Thus, 𝑓(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛−2𝑥
𝑛−2 +⋯+ 𝑎1𝑥 + 𝑎0 will be a monic polynomial of 

degree 𝑛 if 𝑎𝑛 = 1. For example, 𝑥2 + 2𝑥 + 1 and  𝑥3 − 4𝑥2 + 2𝑥 + 1 are monic polynomials but 

2𝑥2 + 3𝑥 + 1 is not a monic polynomial. 

 

 

Minimal Polynomial of a matrix / linear transformation:  A monic polynomial of the smallest degree 

which is satisfied by the given matrix or linear transformation is called its minimal polynomial. A 

polynomial 𝒇(𝒙) is the minimal polynomial of the matrix 𝑀 / Linear transformation 𝑇 then: 

1. 𝑓(𝑥) is monic polynomial 

2. 𝑓(𝑀) = 0 / 𝑓(𝑇) = 0 

3. If 𝑔(𝑀) = 0 / 𝑔(𝑇) = 0 then  𝑑𝑒𝑔 𝑓(𝑥) ≤ deg 𝑔(𝑥) 

4. If 𝑑𝑒𝑔 ℎ(𝑥) < deg 𝑓(𝑥) then  ℎ(𝑀) ≠ 0 / ℎ(𝑇) ≠ 0 

 
 

Program: 

Program to find the characteristic polynomial and the minimal polynomial of a matrix M 

load("diag")$ 

M:matrix([R1],[R2],[R3],…,[Rn])$ 

C:factor(charpoly(M,x))$ 

P:minimalPoly(jordan(M))$ 

print("Given Matrix is M=",M)$ 

print("Characteristic Polynomial of M=",C,"=",expand(C))$ 

print("Minimal Polynomial of M=",P,"=",expand(P))$ 

Note: sometimes C:factor(-charpoly(M,x))$ is used to get positive leading coefficient 

https://en.wikipedia.org/wiki/Univariate_polynomial
https://en.wikipedia.org/wiki/Leading_coefficient
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Program to the characteristic polynomial and the minimal polynomial of  

a linear transformation 𝑇:𝑈 → 𝑈 
 

load("diag")$ 

T(x):= define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

B: Standard ordered basis of domain$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

C:factor(-charpoly(M,x))$ 

P:minimalPoly(jordan(M))$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Characteristic Polynomial of T=",C,"=",expand(C))$ 

print("Minimal Polynomial of T=",P,"=",expand(P))$ 

 

Note: 1.  In the above program X:[x,y,z] is taken for illustration. 

  Take X:[x,y] if 𝑈 = 𝑅2, X:[x,y,z] if 𝑈 = 𝑅3, X:[w,x,y,z] if 𝑈 = 𝑅4 and so on. 

 

2. Take standard basis as: [[1,0],[0,1]] for 𝑅2,  [[1,0,0],[0,1,0],[0,0,1]] for 𝑅3 

 [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on. 
 

Worked Examples: 

Problem 1. Write a program to find the characteristic polynomial and the minimal polynomial of  

the matrix  𝑀 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

) 

Program:  

load("diag")$ 

M:matrix([0,1,0,1],[1,0,1,0],[0,1,0,1],[1,0,1,0])$ 

C:factor(charpoly(M,x))$ 

P:minimalPoly(jordan(M))$ 

print("Given Matrix is M=",M)$ 

print("Characteristic Polynomial of M=",C,"=",expand(C))$ 

print("Minimal Polynomial of M=",P,"=",expand(P))$  
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Output: 

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

) 

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑀 = (𝑥 − 2)𝑥2(𝑥 + 2) = 𝑥4 − 4𝑥2 

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑀 = (𝑥 − 2)𝑥(𝑥 + 2) = 𝑥3 − 4𝑥 

 

Problem 2. Write a program to find the characteristic polynomial and the minimal polynomial of  

the matrix  𝑀 = (
2 1 1
−1 2 −1
−1 1 3

) 

Program:  

load("diag")$ 

M:matrix([2,1,1],[-1,2,-1],[-1,1,3])$ 

C:factor(-charpoly(M,x))$ 

P:radcan(minimalPoly(jordan(M)))$ 

print("Given Matrix is M=",M)$ 

print("Characteristic Polynomial of M=",C)$ 

print("Minimal Polynomial of M=",P)$ 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
2 1 1
−1 2 −1
−1 1 3

) 

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑀 = 𝑥3 − 7𝑥2 + 19𝑥 − 19 

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑀 = 𝑥3 − 7𝑥2 + 19𝑥 − 19 

 

Problem 3. Write a program to find the characteristic polynomial and the minimal polynomial of  

the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝒚, 𝒚 + 𝒛, 𝒛 + 𝒙) 

Program:  

load("diag")$ 

T(x):=[x[1]+x[2],x[2]+x[3],x[3]+x[1]]$ 

X:[x,y,z]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 
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C:factor(-charpoly(M,x))$ 

P:minimalPoly(jordan(M))$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Characteristic Polynomial of T=",C,"=",expand(C))$ 

print("Minimal Polynomial of T=",P,"=",expand(P))$ 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑦 + 𝑥, 𝑧 + 𝑦, 𝑧 + 𝑥] 

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 2)(𝑥2 − 𝑥 + 1) = 𝑥3 − 3𝑥2 + 3𝑥 − 2 

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 2) (𝑥 +
√3%𝑖 − 1

2
)(𝑥 −

√3%𝑖 + 1

2
) = 𝑥3 − 3𝑥2 + 3𝑥 − 2 

 

 

 

 

 

 

 

 

 

Problem 4. Write a program to find the characteristic polynomial and the minimal polynomial of  

the linear transformation 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 

 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝒘,𝒘 + 𝒙,𝒘 + 𝒙 + +𝒚,𝒘 + 𝒙 + 𝒚 + 𝒛) 

Program:  

load("diag")$ 

T(x):=[x[1],x[1]+x[2],x[1]+x[2]+x[3],x[1]+x[2]+x[3]+x[4]]$ 

X:[w,x,y,z]$ 

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

C:factor(charpoly(M,x))$ 

P:minimalPoly(jordan(M))$ 

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$ 

print("Characteristic Polynomial of T=",C,"=",expand(C))$ 

print("Minimal Polynomial of T=",P,"=",expand(P))$ 
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Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [𝑤, 𝑥 + 𝑤, 𝑦 + 𝑥 + 𝑤, 𝑧 + 𝑦 + 𝑥 + 𝑤] 

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 1)4 = 𝑥4 − 4𝑥3 + 6𝑥2 − 4𝑥 + 1 

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 1)4 = 𝑥4 − 4𝑥3 + 6𝑥2 − 4𝑥 + 1 

 

 

 

 

 

 

 

 

 

Problem 5. Write a program to find the characteristic polynomial and the minimal polynomial of  

the linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙,−𝒚) 

Program:  

load("diag")$ 

T(x):=[x[1],-x[2]]$ 

X:[x,y]$ 

B:[[1,0],[0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

C:factor(charpoly(M,x))$ 

P:minimalPoly(jordan(M))$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Characteristic Polynomial of T=",C,"=",expand(C))$ 

print("Minimal Polynomial of T=",P,"=",expand(P))$ 

 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑥,−𝑦] 

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 1)(𝑥 + 1) = 𝑥2 − 1 

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑇 = (𝑥 − 1)(𝑥 + 1) = 𝑥2 − 1 
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Exercise: 

 

I. Write a program to find the characteristic polynomial and the minimal polynomial of the matrices:  

1. 𝑀 = (
3 1 −1
2 2 −1
2 2 0

)   (Answer: 𝑥3 − 5𝑥2 + 8𝑥 − 4 and 𝑥3 − 5𝑥2 + 8𝑥 − 4) 

2. 𝑀 = (
5 −6 −6
−1 4 2
3 −6 −4

)   (Answer: 𝑥3 − 5𝑥2 + 8𝑥 − 4 and 𝑥2 − 3𝑥 + 2) 

3. 𝑀 = (
3 −1 0
0 2 0
1 −1 2

)   (Answer: 𝑥3 − 7𝑥2 + 16𝑥 − 12 and 𝑥2 − 5𝑥 + 6) 

4. 𝑀 = (
2 5
6 1

)    (Answer: 𝑥2 − 3𝑥 − 28 and 𝑥2 − 3𝑥 − 28) 

 

II. Write a program to find the characteristic polynomial and the minimal polynomial of the 

linear transformations:  

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟑𝒙 + 𝒚, 𝟔𝒙 + 𝟐𝒚)    

(Answer: 𝑥2 − 1  and 𝑥2 − 1) 

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛)    

(Answer: 𝑥3 − 3𝑥2 + 3𝑥 − 1 and 𝑥 − 1) 

3. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚) = (𝟎, 𝟎, 𝟎)    

(Answer: 𝑥3 and 𝑥) 

4. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟎, 𝒙, 𝒚)    

(Answer: 𝑥3 and 𝑥3) 

5. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟒𝒙 + 𝒛, 𝟐𝒙 + 𝟑𝒚 + 𝟐𝒛, 𝒙 + 𝟒𝒛)    

(Answer: 𝑥3 − 11𝑥2 + 39𝑥 − 45 and 𝑥2 − 8𝑥 + 15) 

  



 

                         72

Program 10 

Program to find the algebraic multiplicity and geometric multiplicity 

of the Eigenvalues of the given linear transformation. 

 
Aim: To find the algebraic multiplicity and geometric multiplicity of the Eigenvalues 

of the given linear transformation /matrix using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

Key Function 

* (asterisk) The operator * represents commutative multiplication 

^  Exponentiation operator or power or index 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

L[i] Returns i-th element of the list L 

' The single quote operator ' prevents evaluation. 

makelist (expr, i, i_0, i_max) 

Returns the list of elements obtained when ev 

(expr, i=j) is applied to the elements j of the 

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or 

equal to |i_max|. 

length (expr) 
Returns the number of parts in the external (displayed) 

form of expr 

:= The function definition operator 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise 

the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 

transpose (M) Returns the transpose of M. 

apply('matrix,L) Converting nested lists L to matrix 

reverse (list) 
Reverses the order of the members of the list (not the 

members themselves) 

table_form() 

Displays a 2D list in a form that is more readable than the 

output from Maxima’s default output routine. The input is 

a list of one or more lists. 

push (item, list) 
push prepends the item item to the list list and returns a 

copy of the new list. 

eigenvalues (M) or eivals (M) 

Returns a list of two lists containing the eigenvalues of 

the matrix M. The first sublist of the return value is the 

list of eigenvalues of the matrix, and the second sublist is 

the list of the multiplicities of the eigenvalues in the 

corresponding order. 
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Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 
 

Definitions and Formulae: 

 

Eigen value and Eigen vector of a Linear transformation: Let 𝑽 be a vector space over a field 

𝑭 and  𝑻: 𝑽 ⟶ 𝑽 be a linear transformation / linear operator. A scalar 𝝀 ∈ 𝑭 is called an eigen value 

/ characteristic value of 𝑻 if 𝑻(𝒗) = 𝝀𝒗  for some non-zero vector 𝒗 ∈ 𝑽. Then 𝒗 is called an eigen 

vector / characteristic vector corresponding to the eigen value 𝝀. 

Similarly, a non-zero vector 𝒗 ∈ 𝑽 is called an eigen vector / characteristic vector of 𝑻 if 𝑻(𝒗) =

𝝀𝒗  for some scalar 𝝀 ∈ 𝑭. Then 𝝀 ∈ 𝑭 is called an eigen value / characteristic value corresponding 

to the eigen vector 𝒗. 

 

Algebraic Multiplicity of an Eigen Value: An eigen value of a linear transformation may be 

repeated. The number of times an eigen value is repeated is called its algebraic multiplicity. For a 

non-repeated eigen value, algebraic multiplicity is 1. For twice repeated eigen value, algebraic 

multiplicity is 2 and so on. Using characteristic polynomial, algebraic multiplicity of an eigen 

value 𝜆 is the largest integer 𝑘 for which (𝑥 − 𝜆)𝑘 is a factor of the characteristic polynomial 𝑓(𝑥). 

 

Geometric Multiplicity of an Eigen Value: The number of linearly independent eigen vectors 

corresponding to an eigen value is called its geometric multiplicity. In fact, geometric multiplicity 

is the dimension of eigen space of an eigen value. For a non-repeated eigen value, geometric 

multiplicity is 1. For twice repeated eigen value, geometric multiplicity may be 1 or 2 depending 

on the dimension of its eigen space. 

 

Relation between algebraic and geometric multiplicities of an eigen value: For any eigen value 

𝒈𝒆𝒐𝒎𝒆𝒕𝒓𝒊𝒄 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚 ≤  𝒂𝒍𝒈𝒆𝒃𝒓𝒂𝒊𝒄 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚 

 

 

eigenvectors (M) or  eivects (M) 

Computes eigenvectors of the matrix M. The return value 

is a list of two elements. The first is a list of the 

eigenvalues of M and a list of the multiplicities of the 

eigenvalues. The second is a list of lists of eigenvectors. 

There is one list of eigenvectors for each eigenvalue. 

There may be one or more eigenvectors in each list. 
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Program: 

Program to find the algebraic multiplicity and geometric multiplicity of eigen values of a 

linear transformation 𝑻: 𝑹𝒏⟶ 𝑹𝒏 

 

T(x):= define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

B:Standard basis of given vector space$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

table_form(reverse(N))$ 
 

 

Note: 1. Here X:[x,y,z] is taken for illustration purpose. 

          Take X:[x,y] if domain is 𝑅2,  X:[x,y,z] if domain is 𝑅3, 

          X:[w,x,y,z] if domain is 𝑅4 and so on. 
 

     2. Take standard basis as: B:[[1,0],[0,1]] for 𝑅2,  B:[[1,0,0],[0,1,0],[0,0,1]] for 𝑅3, 

B: [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4and so on. 

 

Program to find the algebraic multiplicity and geometric multiplicity of eigen 

values of a matrix 

M:matrix([R1],[R2],…,[Rn])$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear matrix is M=",M)$ 

table_form(reverse(N))$ 
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Worked Examples: 

Problem 1. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values 

of the linear transformation 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝟒𝒚, 𝟐𝒙 + 𝟑𝒚) 

Program:  

T(x):=[x[1]+4*x[2],2*x[1]+3*x[2]]$ 

X:[x,y]$ 

B:[[1,0],[0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [4𝑦 + 𝑥, 3𝑦 + 2𝑥]  

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 5 1 {[1,1]}

𝜆2 = −1 1 {[1, −
1

2
]}

 

 

  

 

 

 

 

 

 

 

 

Problem 2. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values 

of the linear transformation 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎,𝒘, 𝒙, 𝒚) 
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Program:  

T(x):=[0,x[1],x[2],x[3]]$ 

X:[w,x,y,z]$ 

B:[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(w,x,y,z)=",T(X))$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑤, 𝑥, 𝑦, 𝑧) = [0, 𝑤, 𝑥, 𝑦]  

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 4 1 {[0,0,0,1]}

 

 

 

 

 

 

 

 

 

Problem 3. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values 

of the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝟐𝒙 + 𝒚, 𝟑𝒙 + 𝟐𝒚) 

Program:  

T(x):=[x[1], 2*x[1]+x[2],3*x[1]+2*x[2]]$ 

X:[x,y,z]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$ 
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N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑥, 𝑦 + 2𝑥, 2𝑦 + 3𝑥]  

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 0 1 1 {[0,0,1]}
𝜆2 = 1 2 1 {[0,1,2]}

 

 

 

 

 

 

 

 

 

 

Problem 4. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values 

of the linear transformation 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 

 𝑻(𝒙, 𝒚, 𝒛) = (𝟓𝒙 − 𝟔𝒚 − 𝟔𝒛,−𝒙 + 𝟒𝒚 + 𝟐𝒛, 𝟑𝒙 − 𝟔𝒚 − 𝟒𝒛) 

Program:  

T(x):=[5*x[1]-6*x[2]-6*x[3],-x[1]+4*x[2]+2*x[3],3*x[1]-6*x[2]-4*x[3]]$ 

X:[x,y,z]$ 

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

table_form(reverse(N))$ 
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Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [−6𝑧 − 6𝑦 + 5𝑥, 2𝑧 + 4𝑦 − 𝑥,−4𝑧 − 6𝑦 + 3𝑥]  

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝜆1 = 1 1 1 {[1,−
1

3
, 1]}

𝜆2 = 2 2 2 {[0,1, −1], [1,0,
1

2
]}

 

 

 

 

 

 

 

 

 

 

 

Problem 5. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values 

of the matrix 𝑀 = (
1 2 0
2 1 −6
2 −2 3

) 

Program:  

M:matrix([1,2,0],[2,1,-6],[2,-2,3])$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear matrix is M=",M)$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
1 2 0
2 1 −6
2 −2 3

)  

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = −3 1 1 {[1,−2,−1]}
𝜆2 = 3 1 1 {[1,1,0]}
𝜆3 = 5 1 1 {[1,2,−1]}

 

 

 



 

                         79

 

 

 

 

 

 

 

 

Problem 6. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values 

of the matrix 𝑀 = (
1 1
0 1

) 

Program:  

M:matrix([1,1],[0,1])$ 

[vals, vecs]:eigenvectors(M)$ 

N:[["Eigen Value","algebraic Multiplicity","Geometric Multiplicity","Linearly Independent Eigen vectors"]]$ 

N(i):=[λ[i]=vals[1][i],vals[2][i],length(vecs[i]),setify(vecs[i])]$ 

for i thru length(vals[1]) do N:push(N(i),N)$ 

print("Given Linear matrix is M=",M)$ 

table_form(reverse(N))$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
1 1
0 1

)  

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝜆1 = 1 2 1 {[1,0]}
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Exercise: 

I. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values of 

the given linear transformations: 

 

1.  𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒚, 𝟎)     (Answer: 𝜆 = 0, AM=2, GM=1) 

2.  𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝟎, 𝟎, 𝟎)   (Answer: 𝜆 = 0, AM=3, GM=3) 

3.  𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛)   (Answer: 𝜆 = 1, AM=3, GM=3) 

4.  𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒙 − 𝒚, 𝒙 − 𝒛) 

(Answer: 𝜆 = 1, AM=1, GM=1, 𝜆 = −1, AM=2, GM=2) 

5.  𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝒘 + 𝒙, 𝒙 + 𝒚, 𝒚 + 𝒛, 𝒛 + 𝒘) 

(Answer: 𝜆 = 0, AM=1, GM=1, 𝜆 = 2, AM=1, GM=1, 𝜆 = 1 + 𝑖, AM=1, GM=1, 𝜆 = 1 − 𝑖, AM=1, GM=1) 

 

II. Write a program to find the algebraic multiplicity and geometric multiplicity of eigen values of 

the given matrices: 

 

1.  𝑴 = (
2 5
0 2

)    (Answer: 𝜆 = 2, AM=2, GM=1) 

 

2.  𝑴 = (
0 0 2
1 0 1
0 1 −2

) (Answer: 𝝀 = 𝟏, AM=1, GM=1, 𝝀 = −𝟏, AM=1, GM=1, 𝝀 = −𝟐, AM=1, GM=1) 

 
 

3.  𝑴 = (
2 4 6
0 2 2
0 0 4

)   (Answer: 𝝀 = 𝟐, AM=2, GM=1, 𝝀 = 4, AM=1, GM=1) 

 
 

4.  𝑴 = (

1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

) (Answer: 𝝀 = 1, AM=2, GM=1, 𝝀 = 0, AM=2, GM=1)
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Program 11 

Program on diagonalization. 

 
Aim: To test whether a square matrix / a linear operator is diagonalizable or not and 

finding its diagonal form if exists using Mathematics Softwares (FOSS). 

Software: Maxima 

Keys:  

 

 

Key Function 

load ("eigen") 

Loads the package eigen which contains several functions 

devoted to the symbolic computation of eigenvalues and 

eigenvectors. 

* (asterisk) The operator * represents commutative multiplication 

^  Exponentiation operator or power or index 

[a1, a2,…,am] List of numbers/objects  a1, a2,…,am. 

L[i] Returns i-th element of the list L 

' The single quote operator ' prevents evaluation. 

makelist (expr, i, i_0, i_max) 

Returns the list of elements obtained when ev 

(expr, i=j) is applied to the elements j of the 

sequence: i_0, i_0 + 1, i_0 + 2, ..., with |j| less than or 

equal to |i_max|. 

length (expr) 
Returns the number of parts in the external (displayed) 

form of expr 

:= The function definition operator 

if cond_1 then expr_1 else expr_0  
evaluates to expr_1 if cond_1 evaluates to true, otherwise 

the expression evaluates to expr_0. 

print (“text”, expr)$ 
Displays text within inverted commas and evaluates and 

displays expr 

transpose (M) Returns the transpose of M. 

apply('matrix,L) Converting nested lists L to matrix 

similaritytransform (M) 
similaritytransform computes a similarity transform of the 

matrix M. 

leftmatrix 
If P-1MP=D is similarity transform of M then leftmatrix 

refers to P-1 

rightmatrix 
If P-1MP=D is similarity transform of M then rightmatrix 

refers to P 

≠ Not equal to 

[] Empty list 

radcan (expr) 
Simplifies expr, which can contain logs, exponentials, and 

radicals 
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Note:1. Press Shift+Enter for evaluation of commands and display of output. 

         2. Replace semicolon (;) by dollar ($) to suppress output of any input line. 

         3. Replace dollar ($) by semicolon (;) to see output of any input line. 

         4. Start each session with kill(all)$ or quit()$ to remove previously assigned values 

             of all symbols 
 

Definitions and Formulae: 

 

Diagonalization of a square matrix: Let 𝑀 be a square matrix of order 𝑛. 𝑀 is said to be diagonalizable 

if 𝑀 is similar to a diagonal matrix 𝐷, that is, 𝑃−1𝑀𝑃 = 𝐷 is a diagonal matrix for some non-singular 

matrix 𝑃. Here 𝐷 is called the diagonal form of 𝑀.  

 

Not all square matrices are diagonalizable. A square matrix is diagonalizable if for each eigen value, 

algebraic multiplicity = geometric multiplicity. 

 

Diagonalization of a linear operator/transformation: Let 𝑇: 𝑉 → 𝑉 be a linear operator and 𝑉 is a finite-

dimensional vector space. 𝑇 is said to be diagonalizable if there exists a basis 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛} of 

𝑉 such that the matrix of 𝑇 with respect to the basis 𝐵 is diagonal.  

 

Not all linear operators are diagonalizable. A linear operator is diagonalizable if and only if there 

exists a basis of 𝑉 containing eigen vectors of 𝑇. 

 

Program: 

Program to verify diagonalizability of a matrix M. 

Also finding P and D such that 𝑃−1𝑀𝑃 = 𝐷 if M is diagonalizable. 

load("eigen")$ 

M:matrix([R1],[R2],…,[Rn])$ 

similaritytransform (M)$ 

P:rightmatrix$ 

P1:leftmatrix$ 

print("Given matrix is M=",M)$ 

if P≠[] then print("Given matrix is Diagonalizable") 

and print("Matrix P=",P) and 

print("Diagonal form of M is D=",radcan(P1.M.P)) else 

print("Given matrix is not Diagonalizable")$ 
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Program to verify diagonalizability of a linear operator 𝑇: 𝑉 → 𝑉. If 𝑇 is diagonalizable, 

 finding diagonal form of the matrix of T. 

T(x):= define T as an ordered list as given in problem in terms of x[i]$ 

X:[x,y,z]$ 

B:standard basis of domain$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

similaritytransform (M)$ 

P:rightmatrix$ 

P1:leftmatrix$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Matrix of T is M=",M)$ 

if P≠[] then print("Given T is Diagonalizable") and 

print("Diagonal form of M is D=",radcan(P1.M.P)) else 

print("Given T is not Diagonalizable")$ 

 

Note: 1. Here X:[x,y,z] is taken for illustration purpose. 

          Take X:[x,y] if domain is 𝑅2,  X:[x,y,z] if domain is 𝑅3, 

          X:[w,x,y,z] if domain is 𝑅4 and so on. 
 

     2. Take standard basis as: B:[[1,0],[0,1]] for 𝑅2,  B:[[1,0,0],[0,1,0],[0,0,1]] for 𝑅3, 

B: [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] for 𝑅4 and so on. 

 

Worked Examples: 

Problem 1. Write a program to verify diagonalizability of matrix 𝑀 = (
0 −1
1 0

) 

   Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable 

Program:  

load("eigen")$ 

M:matrix([0,-1],[1,0])$ 

similaritytransform (M)$ 

P:rightmatrix$ 
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P1:leftmatrix$ 

print("Given matrix is M=",M)$ 

if P≠[] then print("Given matrix is Diagonalizable") 

and print("Matrix P=",P) and 

print("Diagonal form of M=",radcan(P1.M.P)) else 

print("Given matrix is not Diagonalizable")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
0 −1
1 0

) 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 

𝑀𝑎𝑡𝑟𝑖𝑥 𝑃 =

(

 
 

1

√2

1

√2
%𝑖

√2
−
%𝑖

√2)

 
 

 

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑀 𝑖𝑠 𝐷 = (
−%𝑖 0
0 %𝑖

) 

Problem 2. Write a program to verify diagonalizability of matrix 𝑀 = (
−1 2 4
−2 4 2
−4 2 7

) 

   Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable 

Program:  

load("eigen")$  

M:matrix([-1,2,4],[-2,4,2],[-4,2,7])$ 

similaritytransform (M)$ 

P:rightmatrix$ 

P1:leftmatrix$ 

print("Given matrix is M=",M)$ 

if P≠[] then print("Given matrix is Diagonalizable") 

and print("Matrix P=",P) and 

print("Diagonal form of M is D=",radcan(P1.M.P)) else 

print("Given matrix is not Diagonalizable")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
−1 2 4
−2 4 2
−4 2 7

) 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 
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𝑀𝑎𝑡𝑟𝑖𝑥 𝑃 =

(

 
 
 
 

2

3

1

√2
0

1

3
0

2

√5
2

3

1

√2
−
1

√5)

 
 
 
 

 

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑀 𝑖𝑠 𝐷 = (
4 0 0
0 3 0
0 0 3

) 

Problem 3. Write a program to verify diagonalizability of matrix 𝑀 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

) 

   Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable 

Program:  

load("eigen")$  

M:matrix([0,1,0,1],[1,0,1,0],[0,1,0,1],[1,0,1,0])$ 

similaritytransform (M)$ 

P:rightmatrix$ 

P1:leftmatrix$ 

print("Given matrix is M=",M)$ 

if P≠[] then print("Given matrix is Diagonalizable") 

and print("Matrix P=",P) and 

print("Diagonal form of M is D=",radcan(P1.M.P)) else 

print("Given matrix is not Diagonalizable")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

) 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 

𝑀𝑎𝑡𝑟𝑖𝑥 𝑃 =

(

 
 
 
 
 
 

1

2

1

2

1

√2
0

−
1

2

1

2
0

1

√2
1

2

1

2
−
1

√2
0

−
1

2

1

2
0 −

1

√2)
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𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑀 𝑖𝑠 𝐷 = (

−2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

) 

Problem 4. Write a program to verify diagonalizability of matrix 𝑀 = (
1 1
0 1

) 

   Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable 

Program:  

load("eigen")$ 

M:matrix([0,-1],[1,0])$  

similaritytransform (M)$ 

P:rightmatrix$ 

P1:leftmatrix$ 

print("Given matrix is M=",M)$ 

if P≠[] then print("Given matrix is Diagonalizable") 

and print("Matrix P=",P) and 

print("Diagonal form of M=",radcan(P1.M.P)) else 

print("Given matrix is not Diagonalizable")$ 
 

Output: 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
1 1
0 1

) 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑛𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 

Problem 5. Write a program to verify diagonalizability of matrix 𝑀 = (
2 1 0
0 2 1
0 0 2

) 

   Also find 𝑃 and 𝐷 such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable 

Program:  

load("eigen")$  

M:matrix([2,1,0],[0,2,1],[0,0,2])$ 

similaritytransform (M)$ 

P:rightmatrix$ 

P1:leftmatrix$ 

print("Given matrix is M=",M)$ 

if P≠[] then print("Given matrix is Diagonalizable") 

and print("Matrix P=",P) and 

print("Diagonal form of M is D=",radcan(P1.M.P)) else 

print("Given matrix is not Diagonalizable")$ 
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Output: 

 𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑀 = (
2 1 0
0 2 1
0 0 2

)  

𝐺𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑛𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 

 

Problem 6. Write a program to verify diagonalizability of linear operator 𝑻:𝑹𝟑 → 𝑹𝟑 defined by 

 𝑻(𝒙, 𝒚, 𝒛) = (𝟒𝒙 + 𝒛, 𝟐𝒙 + 𝟑𝒚 + 𝟐𝒛, 𝒙 + 𝟒𝒛). Also, the find diagonal form of the matrix 

of T if 𝑻 is diagonalizable. 

 Program:  

T(x):=[4*x[1]+x[3],2*x[1]+3*x[2]+2*x[3],x[1]+4*x[3]]$ 

X:[x,y,z]$  

B:[[1,0,0],[0,1,0],[0,0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

similaritytransform (M)$ 

P:rightmatrix$ 

P1:leftmatrix$ 

print("Given Linear Transformation is T(x,y,z)=",T(X))$ 

print("Matrix of T is M=",M)$ 

if P≠[] then print("Given T is Diagonalizable") and 

print("Diagonal form of M is D=",radcan(P1.M.P)) else 

print("Given T is not Diagonalizable")$ 
 

Output: 

 𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦, 𝑧) = [𝑧 + 4𝑥, 2𝑧 + 3𝑦 + 2𝑥, 4𝑧 + 𝑥]  

𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑖𝑠 𝑀 = (
4 0 1
2 3 2
1 0 4

) 

𝐺𝑖𝑣𝑒𝑛 𝑇 𝑖𝑠 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑀 𝑖𝑠 𝐷 = (
5 0 0
0 3 0
0 0 3

) 

 

Problem 7. Write a program to verify diagonalizability of linear operator 𝑻:𝑹𝟐 → 𝑹𝟐 defined by 

 𝑻(𝒙, 𝒚) = (𝟐𝒙 + 𝒚, 𝟐𝒚). Also, the find diagonal form of the matrix 

of T if 𝑻 is diagonalizable. 

  



 

                         88

Program:  

T(x):=[2*x[1]+x[2],2*x[2]]$  

X:[x,y]$ 

B:[[1,0],[0,1]]$ 

L:makelist(T(B[i]),i,1,length(B))$ 

M:transpose(apply('matrix,L))$ 

similaritytransform (M)$ 

P:rightmatrix$ 

P1:leftmatrix$ 

print("Given Linear Transformation is T(x,y)=",T(X))$ 

print("Matrix of T is M=",M)$ 

if P≠[] then print("Given T is Diagonalizable") and 

print("Diagonal form of M is D=",radcan(P1.M.P)) else 

print("Given T is not Diagonalizable")$ 
 

Output: 

 𝐺𝑖𝑣𝑒𝑛 𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇(𝑥, 𝑦) = [𝑦 + 2𝑥, 2𝑦]  

𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑇 𝑖𝑠 𝑀 = (
2 1
0 2

) 

𝐺𝑖𝑣𝑒𝑛 𝑇 𝑖𝑠 𝑛𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 
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Exercise: 

I. Write a program to verify diagonalizability of a given matrix 𝑀. Also finding 𝑃 and 𝐷  

such that 𝑃−1𝑀𝑃 = 𝐷 if 𝑀 is diagonalizable. 

 

1. 𝑀 = (
5 0
3 5

)      (Answer: 𝑁𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

2. 𝑀 = (
5 0
3 6

)      (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

3. 𝑀 = (
6 3 −8
0 −2 0
1 0 −3

)     (Answer: 𝑁𝑜𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

4. 𝑀 = (
2 1
0 2

)      (Answer: 𝑁𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

5. 𝑀 = (
1 0 0
2 1 0
3 2 0

)      (Answer: 𝑁𝑜𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

6. 𝑀 = (
2 0 0
2 6 0
3 2 1

)      (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

7. 𝑀 = (

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

)     (Answer: 𝑁𝑜𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

II. Write a program to verify diagonalizability of given linear operator 𝑇: 𝑉 → 𝑉. 

Also, the find diagonal form of the matrix of T if 𝑇 is diagonalizable. 

 

1. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝟎, 𝟎)    (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

2. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝒛)      (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

3. 𝑻:𝑹𝟒⟶𝑹𝟒 defined by 𝑻(𝒘, 𝒙, 𝒚, 𝒛) = (𝟎,𝒘, 𝒙, 𝒚)     (Answer: 𝑁𝑜𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

4. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝒚, 𝟐𝒚)     (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

5. 𝑻:𝑹𝟐⟶𝑹𝟐 defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝟐𝒚, 𝒚)     (Answer: 𝑁𝑜𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

6. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒙 + 𝟑𝒚, 𝟐𝒙 − 𝒚, 𝒚 − 𝒛)    (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 

7. 𝑻:𝑹𝟑⟶𝑹𝟑 defined by 𝑻(𝒙, 𝒚, 𝒛) = (𝒛, 𝒚, 𝒙)      (Answer: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒) 
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   No.



 
 

 

 

Method. 

The method consists of locating the root of the equation 0)( xf  between a  and 

b a( < )b . If )(xf  is continuous in the interval [a, b] and )(af and )(bf  are of 

opposite signs then there is a root between a  and b . For definiteness, )(af be 

negative and )(bf  be positive. Then the first approximation to the root is 
1x =

2

ba 
. If 

1(xf ) = 0 then 
1x  is a root of )(xf =0. Otherwise, the root lies between a  

and 
1x  or 

1x  and b accordingly as 
1(xf ) is positive or negative. Then we bisect the 

interval as before and continue the process until the root is found to the desired 

accuracy. 

Example: Maxima program to find a real root of  𝑥3 − 9𝑥 + 1 = 0 using Bisection 

method.
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PROGRAM-1: To find a real root of the given equation using Bisection



 
 

 

 

 
 

 

Exercise: Write a maxima program to find a real root of the following equations 

using Bisection method. 

 

1.1 𝒙𝟑 − 𝟓𝒙 + 𝟑 = 𝟎    (Ans: 0. 657)  

1.2 𝒙𝟑 − 𝒙 − 𝟏 = 𝟎     (Ans: 1. 325) 

1.3 𝒙𝟑 − 𝟏𝟔𝒙𝟐 + 𝟑 = 𝟎    (Ans: 0.439) 

1.4 𝒙𝒆𝒙 = 𝟏      (Ans: 0. 567) 

1.5    𝒄𝒐𝒔𝒙 − 𝟑𝒙 + 𝟏 = 𝟎    (Ans: 0. 607) 
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Program-2: To find a real root of the given equation using Regula Falsi Method. 

 

The Regula- Falsi method is based on replacing the part of the curve between 

the points ))(,( 11 xfx  and  ))(,( 22 xfx  by the chord joining these two points and 

then taking the point of intersection of the chord with x -axis as an 

approximation to the root. We obtain 
)()(

)()(

12

1221

xfxf

xfxxfx
x




 ,which gives the first 

approximation. Using this equation, we get a sequence of approximations till we 

get the root to the desired accuracy. 

 

Example: Maxima program to find a real root of 𝑥3 − 2𝑥 − 9 = 0 using Regula 

Falsi method. 
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Exercise: Write a maxima program to find a real root of the following equations 

using Regula  Falsi Method. 

2.1 𝒙𝟑 − 𝒙 − 𝟒 = 𝟎      (Ans: 1. 796)  

2.2 𝒙𝟑 − 𝟐𝒙 − 𝟏 = 𝟎     (Ans: 1. 618) 

2.3 𝒙𝟑 − 𝟏𝟎𝒙 − 𝟓 = 𝟎     (Ans: 3. 388) 

2.4    𝒙𝟑 + 𝟒𝒙𝟐 − 𝟏𝟎 = 𝟎     (Ans: 1. 365) 

2.5    𝒄𝒐𝒔𝒙 − 𝟑𝒙 + 𝟏 = 𝟎     (Ans: 0. 607) 
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Program-03: To find a real root of the given equation using Newton Raphson 

Method. 

 

Assuming that 0x is an approximate value of a real root of the equation 0)( xf

,let 
1x  be the exact root and hxx  01 ,whereh is a small correction. Using 

Taylor’s expansion and neglecting higher powers of  ,.....),( 32 hhh ,we get

)(

)(

0

'

0
01

xf

xf
xx  . 

In general, ,
)(

)(
'1

n

n
nn

xf

xf
xx 

,...2,1,0n  

This is Newton-Raphson iterative formula. 

 

 

Example: Maxima program to find a real root of  𝑥3 − 9𝑥 − 12 = 0 using Newton 

Raphson method. 
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Exercise: Write a maxima program to find a real root of the following equations 

using Newton Raphson Method. 

3.1 𝒙𝟑 − 𝟐𝒙 − 𝟓 = 𝟎             (Ans: 2. 095)  

3.2 𝒙𝟑 + 𝒙𝟐 + 𝟑𝒙 + 𝟒 = 𝟎    (Ans: -1. 222) 

3.3 𝒙𝟑 − 𝟑𝟕 = 𝟎      (Ans: 3. 332) 

3.4  𝒔𝒊𝒏𝒙 = 𝒙 − 𝟐      (Ans: 2. 554) 

3.5  𝒙𝒔𝒊𝒏𝒙 + 𝒄𝒐𝒔𝒙 = 𝟎     (Ans: 2.798) 
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Program-04: Solving system of equations by Gauss elimination method. 
 

Example: Maxima program to solve  

   𝟐𝒙 + 𝒚 + 𝒛 = 𝟏𝟎 

   𝟑𝒙 + 𝟐𝒚 + 𝟑𝒛 = 𝟏𝟖 

              𝒙 + 𝟒𝒚 + 𝟗𝒛 = 𝟏𝟔 

by Gauss elimination method. 
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Exercise: Write a maxima program to solve the following by Gauss     

                 elimination method. 

 

4.1  𝒙 + 𝟒𝒚 − 𝒛 = −𝟓    [𝒙 =
𝟏𝟏𝟕

𝟕𝟏
, 𝒚 = −

𝟖𝟏

𝟕𝟏
, 𝒛 =

𝟏𝟒𝟖

𝟕𝟏
] 

  𝒙 + 𝒚 − 𝟔𝒛 = −𝟏𝟐 

             𝟑𝒙 − 𝒚 − 𝒛 = 𝟒 

 

4.2   𝒙 + 𝒚 + 𝒛 = 𝟔           [𝒙 = 𝟑, 𝒚 = 𝟏, 𝒛 = 𝟐] 

  𝟑𝒙 + 𝟑𝒚 + 𝟒𝒛 = 𝟐𝟎 

             𝟐𝒙 + 𝒚 + 𝟑𝒛 = 𝟏𝟑 

 

4.3  𝟐𝒙 + 𝟐𝒚 + 𝒛 = 𝟏𝟐       [𝒙 = −
𝟓𝟏

𝟒
, 𝒚 =

𝟏𝟏𝟓

𝟖
, 𝒛 =

𝟑𝟓

𝟒
]       

  𝟑𝒙 + 𝟐𝒚 + 𝟐𝒛 = 𝟖 

    𝟓𝒙 + 𝟏𝟎𝒚 − 𝟖𝒛 = 𝟏𝟎 

 

4.4  5𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 = 𝟒          [𝒙𝟏 = 𝟏, 𝒙𝟐 = 𝟐, 𝒙𝟑 = −𝟏, 𝒙𝟒 = −𝟐] 

  𝒙𝟏 + 𝟕𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 = 𝟏𝟐 

             𝒙𝟏 + 𝒙𝟐 + 𝟔𝒙𝟑 + 𝒙𝟒 = −𝟓 

  𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + 𝟒𝒙𝟒 = −𝟔 

 

4.5  𝒙𝟏 − 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 = 𝟔            [𝒙𝟏 =
𝟏𝟕

𝟑
, 𝒙𝟐 = 𝟔, 𝒙𝟑 =

𝟓

𝟑
, 𝒙𝟒 =

𝟏𝟒

𝟑
] 

  𝟐𝒙𝟏 − 𝒙𝟑 − 𝒙𝟒 = 𝟓 

    𝟐𝒙𝟏 − 𝟐𝒙𝟐 + 𝒙𝟒 = 𝟒 

  𝒙𝟐 + 𝒙𝟑 − 𝒙𝟒 = 𝟑 
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Program-05: Solving system of equations by Jacobi  iteration method. 
 

Example: Maxima program to solve  

   𝟏𝟎𝒙 + 𝒚 + 𝒛 = 𝟏𝟐 

   𝟐𝒙 + 𝟏𝟎𝒚 + 𝒛 = 𝟏𝟑 

              𝟐𝒙 + 𝟐𝒚 + 𝟏𝟎𝒛 = 𝟏𝟒  

        by Jacobi iteration method. 
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Exercise: Write a maxima program to solve the following by Jacobi  iteration 

method. 

 

5.1  𝟐𝟎𝒙 + 𝒚 − 𝟐𝒛 = 𝟏𝟕   [𝒙 = 𝟏, 𝒚 = −𝟏, 𝒛 = 𝟏] 

  𝟑𝒙 + 𝟐𝟎𝒚 − 𝒛 = −𝟏𝟖 

             𝟐𝒙 − 𝟑𝒚 + 𝟐𝟎𝒛 = 𝟐𝟓 

 

 

5.2  𝟓𝒙 + 𝟐𝒚 + 𝒛 = 𝟏𝟐            [𝒙 = 𝟏, 𝒚 = 𝟐, 𝒛 = 𝟑] 

  𝒙 + 𝟒𝒚 + 𝟐𝒛 = 𝟏𝟓 

             𝒙 + 𝟐𝒚 + 𝟓𝒛 = 𝟐𝟎 

 

5.3  𝟓𝒙 − 𝒚 = 𝟗     [𝒙 = 𝟐, 𝒚 = 𝟏, 𝒛 = −𝟏] 

  −𝒙 + 𝟓𝒚 − 𝒛 = 𝟒 

             𝒚 − 𝟓𝒛 = 𝟔 

 

5.4  𝟓𝒙 − 𝒚 + 𝒛 = 𝟏𝟎  [𝒙 = 𝟐. 𝟓𝟓𝟔, 𝒚 = 𝟏. 𝟕𝟐𝟐, 𝒛 = −𝟏. 𝟎𝟓𝟓] 

  𝒙 + 𝟐𝒚 = 𝟔 

             𝒙 + 𝒚 + 𝟓𝒛 = −𝟏 

  with (2, 3, 0)as initial approximation to the solution. 

 

5.5  𝟓𝒙 − 𝒚 + 𝟑𝒛 = 𝟏𝟎                    [𝒙 = 𝟒, 𝒚 = 𝟏, 𝒛 = −𝟑] 

  𝟑𝒙 + 𝟔𝒚 = 𝟏𝟖 

             𝒙 + 𝒚 + 𝟓𝒛 = −𝟏𝟎 

  with (3, 0, −2) as initial approximation to the solution. 

 

 

Note:  To get decimal values in the solution use float command instead of round    
            command in the program. 
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Program-06: Solving system of equations by Gauss - Seidel iterative method. 
 

Example: Maxima program to solve  

   𝟐𝟕𝒙 + 𝟔𝒚 − 𝒛 = 𝟖𝟓 

   𝟔𝒙 + 𝟏𝟓𝒚 + 𝟐𝒛 = 𝟕𝟐 

              𝒙 + 𝒚 + 𝟓𝟒𝒛 = 𝟏𝟏𝟎 

by Jacobi iteration method. 
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Exercise: Write a maxima program to solve the following by Gauss - Seidel iterative 

method. 

 

6.1  𝟏𝟎𝒙 + 𝒚 + 𝒛 = 𝟏𝟐   [𝒙 = 𝟏, 𝒚 = 𝟏, 𝒛 = 𝟏] 

  𝒙 + 𝟏𝟎𝒚 + 𝒛 = 𝟏𝟐 

             𝒙 + 𝒚 + 𝟏𝟎𝒛 = 𝟏𝟐 

 

 

6.2  𝟓𝒙 + 𝟐𝒚 + 𝒛 = 𝟏𝟐   [𝒙 = 𝟏, 𝒚 = 𝟐, 𝒛 = 𝟑] 

  𝒙 + 𝟒𝒚 + 𝟐𝒛 = 𝟏𝟓 

             𝒙 + 𝟐𝒚 + 𝟓𝒛 = 𝟐𝟎 

 

6.3  𝟐𝟖𝒙 + 𝟒𝒚 − 𝒛 = 𝟑𝟐         [𝒙 = 𝟎. 𝟗𝟗𝟑𝟑, 𝒚 = 𝟏. 𝟓𝟎𝟕, 𝒛 = 𝟏. 𝟖𝟒𝟗] 

  𝟐𝒙 + 𝟏𝟕𝒚 + 𝟒𝒛 = 𝟑𝟓 

             𝒙 + 𝟑𝒚 + 𝟏𝟎𝒛 = 𝟐𝟒 

 

6.4  𝒙 + 𝟏𝟕𝒚 − 𝟐𝒛 = 𝟒𝟖          [𝒙 = 𝟏. 𝟔𝟕𝟓, 𝒚 = 𝟐. 𝟖𝟔𝟐, 𝒛 = 𝟏. 𝟏𝟔𝟑] 

  𝟐𝒙 + 𝟐𝒚 + 𝟏𝟖𝒛 = 𝟑𝟎 

             𝟑𝟎𝒙 − 𝟐𝒚 + 𝟑𝒛 = 𝟒𝟖 

   

6.5  𝟗𝒙 − 𝒚 + 𝟐𝒛 = 𝟗           [𝒙 = 𝟎. 𝟗𝟏𝟕, 𝒚 = 𝟏. 𝟔𝟒𝟕, 𝒛 = 𝟏. 𝟏𝟗𝟓] 

  𝒙 + 𝟏𝟎𝒚 − 𝟐𝒛 = 𝟏𝟓 

             𝟐𝒙 − 𝟐𝒚 − 𝟏𝟑𝒛 = −𝟏𝟕 

   

 

 

Note:  To get decimal values in the solution use float command instead of round    
            command in the program. 
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Program-07: To find the value of f(x) at any point using Newton-Gregory 

forward interpolation formula. 

 

If 𝑓(𝑥0) = 𝑦0, 𝑓(𝑥1) = 𝑦1, ⋯ , 𝑓(𝑥𝑛) = 𝑦𝑛 be a set of values of an unknown function 

𝑦 = 𝑓(𝑥) corresponding to the values 𝑥: 𝑥0, 𝑥1, 𝑥3, ⋯ , 𝑥𝑛 at equal intervals then the 

Newton-Gregory forward interpolation formula is given by 

𝒇(𝒙 + 𝒏𝒉) = 𝒇(𝒙) +
𝒏

𝟏!
∆𝒇(𝒙) +

𝒏(𝒏 − 𝟏)

𝟐!
∆𝟐𝒇(𝒙) +

𝒏(𝒏 − 𝟏)(𝒏 − 𝟐)

𝟑!
∆𝟑𝒇(𝒙) + ⋯ + ∆𝒏𝒇(𝒙) 

 

or 

𝒚𝒙 = 𝒚𝟎 +
𝒏

𝟏!
∆𝒚𝟎 +

𝒏(𝒏 − 𝟏)

𝟐!
∆𝟐𝒚𝟎 +

𝒏(𝒏 − 𝟏)(𝒏 − 𝟐)

𝟑!
∆𝟑𝒚𝟎 + ⋯ + ∆𝒏𝒚𝟎 

 

 

Example: Maxima program to find 𝑓(1.4) using Newton-Gregory forward 

interpolation formula given that. 

𝑥 1 2 3 4 5 

𝑓(𝑥) 10 26 58 112 194 
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Exercise:  

7.1 Use Newton-Gregory interpolation formula to find y at x = 2.5 given 

𝑥 1 2 3 4 5 6 

𝑓(𝑥) 1 8 27 64 125 216 

 

7.2 Use Newton-Gregory interpolation formula to find y f(0.33) given 

𝑥 0.3 0.4 0.5 0.6 

𝑓(𝑥) 0.6179 0.6554 0.6915 0.7257 

 

7.3 Use Newton-Gregory interpolation formula to estimate the population for the 

year 1985 from the table 

Year 1970 1980 1990 2000 2010 2020 

Population 

in crores 
55.75 69.68 87.05 105.96 124.06 139.64 

 

7.4 From the following data find the number of students who obtained less than 45 

marks using Newton-Gregory interpolation formula 

Marks 30-40 40-50 50-60 60-70 70-80 

Number of 

students 
31 42 51 35 31 
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Program-08: Lagrange’s Interpolation. 

 

If 𝑓(𝑥0) = 𝑦0, 𝑓(𝑥1) = 𝑦1, ⋯ , 𝑓(𝑥𝑛) = 𝑦𝑛 be a set of values of an unknown function 

𝑦 = 𝑓(𝑥) corresponding to the values 𝑥: 𝑥0, 𝑥1, 𝑥3, ⋯ , 𝑥𝑛 not necessarily at equal 

intervals then the Lagrange’s interpolation formula is given by 

 
 

Example: Maxima program to find 𝑓(4) using Lagrange’s interpolation formula 

given that. 

𝑥 0 2 3 6 

𝑓(𝑥) -4 2 14 158 
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Exercise:  

8.1  Use Lagrange’s interpolation formula to find y at x= 10 given 

𝑥 5 6 9 11 

𝑓(𝑥) 12 13 14 16 

 

8.2  Use Lagrange’s interpolation formula to find y at x= 1.6 given 

𝑥 1.2 2.0 2.5 3.0 

𝑓(𝑥) 1.36 0.58 0.34 0.20 

 

8.3  Use Lagrange’s interpolation formula to find f(9) given 

𝑥 5 7 11 13 17 

𝑓(𝑥) 150 392 1452 2366 5202 

 

8.4  The following table gives the normal weights of babies during first eight months 

of life 

Age (in months) 0 2 5 8 10 

Weight (in Kg) 2.5 4.4 6.1 7.0 7.5 
 

Estimate the weight of the baby at the age of seven months using Lagrange’s 

interpolation formula. 
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Program-09: To evaluate definite integrals using Simpson’s one-third rule. 

 

 

Let 
b

a

dxxfI )(  , where )(xfy   takes the values nyyyy ,...,,, 210  for .,...,,, 210 nxxxxx 

Divide the interval (a, b) into even number of equal sub-intervals of width h. 

Simpson’s one-third rule is as follows 

)]...(2)...(4)[(
3

)( 2421310

0

  nnn

x

x

yyyyyyyy
h

dxxf
n

 

 

Example: Write a maxima program to evaluate   ∫
1

1+𝑥
𝑑𝑥

6

0
 with n = 6 using 

Simpson’s one-third rule. 
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Exercise: 

Write a maxima program to evaluate the following using Simpson’s one-third rule. 

9.1 ∫
𝟏

𝟏+𝒙𝟐 𝒅𝒙
𝟔

𝟎
 ,  n=6      (Ans:1.366) 

9.2 ∫
𝒙

𝟏+𝒙𝟐 𝒅𝒙
𝟔

𝟎
 ,  n=6      (Ans: 1.801) 

9.3  ∫
𝒙

𝟏+𝒙𝟒 𝒅𝒙
𝟏

𝟎
,  n=4      (Ans:0.393) 

9.4  ∫
𝟏

𝟏+𝒙
𝒅𝒙

𝟏.𝟐

𝟎
 , n=6      (Ans:0.7885) 

9.5  ∫
𝟏

𝒙
𝒅𝒙

𝟐

𝟏
 ,   n=4      (Ans: 0.6933) 
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Let 
b

a

dxxfI )(  , where )(xfy   takes the values nyyyy ,...,,, 210  for .,...,,, 210 nxxxxx 

Divide the interval (a,b) into a number which is multiple of 3 sub-intervals . 

Simpson’s Three-eight rule is as follows

)]...(2)...(3)[(
8

3
)( 36312454210

0

  nnnnn

x

x

yyyyyyyyyyyyhdxxf
n

 

 

 

Example: Write a maxima program to evaluate   ∫
1

(1+𝑥)2 𝑑𝑥
3

0
 with n = 6 using 

Simpson’s three-eight rule. 
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Program-10: To evaluate definite integrals using Simpson’s three-eight rule.



 
 

 
 

Exercise:  Write a maxima program to evaluate the following using Simpson’s        

three-eight rule. 

10.1 ∫ (𝟐𝒙 + 𝒙𝟐)
𝟏

𝟐⁄ 𝒅𝒙
𝟎.𝟑

𝟎
 ,  n=6    (Ans:0.1602) 

10.2 ∫
𝟏

𝒙𝟐+𝟒
𝒅𝒙

𝟑

𝟎
,    n=6    (Ans: 0.4913) 

10.3 ∫ 𝒆
𝟏

𝒙⁄ 𝒅𝒙
𝟒

𝟏
,    n=6     (Ans: 4.866) 

10.4 ∫ 𝒍𝒐𝒈𝒙 𝒅𝒙
𝟓.𝟐

𝟒
,    n=6    (Ans: 1.828) 

10.5 ∫ (𝟏 − 𝟑𝒙𝟒)
𝟏

𝟐⁄ 𝒅𝒙
𝟎.𝟔

𝟎
,  n=6    (Ans: 0.5751) 
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