

BLDE ASSOCIATION'S
S.B.ARTS AND K.C.P SCIENCE COLLEGE,
VIJAYAPUR

DEPARTMENT OF PHYSICS
PROJECTS REPORT

2023-24

B.L.D.E.ASSOCIATION's
S. B. ARTS AND K. C. P. SCIENCE COLLEGE VIJAYAPUR
DEPARTMENT OF PHYSICS
B.Sc.VI Semester

Students Project List-2023-24

Sl. No	UUCMS No	Name	Project title	Guide Name
1	U15KM21S0003	VIKAS TOTAD	Characteristics of GM Counter	Dr. Anil B. Naik
2	U15KM21S0014	LAXMI NARASINGH RAJPUT		
3	U15KM21S0027	AISHWARYA DHAREPPA GADAGI		
4	U15KM21S0049	SHRUTI JETTEPPA ALOOR		
5	U15KM21S0053	MANJUNATH RAMANNA ANKALAGI		
6	U15KM21S0054	SAHANA SHIVAPRAKASH GHANTI		
7	U15KM21S0055	SHIVASHARANAPPA		
8	U15KM21S0061	SAMARTH BASAVARAJ DOTIHAL		
9	U15KM21S0068	PREM RAJU CHAVAN	Determination of Fermi energy of good conductors	Dr. P. S. Patil
10	U15KM21S0074	VIJAYALAXMI SIDDAPPA MANGANNAVAR		
11	U15KM21S0082	VINAYAK SUNIL HUNDEKAR		
12	U15KM21S0091	SIRINA SULTAN UMARJI		
13	U15KM21S0099	AKSHITA WALIKAR	Determination of Fermi energy of good conductors	
14	U15KM21S0102	SRUSHTI		
15	U15KM21S0110	SIDDHARTH AKASHI		
16	U15KM21S0112	PRIYA SUNIL CHIKKANNAVAR		
17	U15KM21S0113	SHESHANK JAGADEESH YADAHALLI	Thermistor energy gap	Dr. Vani R. Desai
18	U15KM21S0117	SATTIGERI PAVITRA RAMESH		
19	U15KM21S0134	SWAPNA RAYAGOND MUCHCHANDI		
20	U15KM21S0138	NIRMALA YAMBATNAL		
21	U15KM21S0166	ANKITA VITHOBA GORANAL	Solar cell characteristics	
22	U15KM21S0185	SARPARAJ		
23	U15KM21S0207	JYOTI RAMESH BIRADAR		
24	U15KM21S0224	ASPAKALI KAMALSAB JAKATADAR		
25	U15KM21S0225	SHAFIYA RAMALI	Zener diode as a voltage regulator	Miss. Kavya Andewadi
26	U15KM21S0230	SOUMYA YELADAGI		
27	U15KM21S0231	PRAVEEN SIDDAPPA HUNASHYAL		
28	U15KM21S0232	SHAMEEM IQBAL PENDARI		
29	U15KM21S0233	SRUSHTI HORTI	Solar cell characteristics	
30	U15KM21S0240	SHREYA DENGI		
31	U15KM21S0244	SHRUTI		
32	U15KM21S0247	SACHIN SHRIMANT RATHOD		
33	U15KM21S0253	SHREYA RAJASHEKHAR	Characteristics of GM Counter	
34	U15KM21S0261	MADIVALAPPA BUDIHAL		
35	U15KM21S0266	GOVIND SINGE		
36	U15KM21S0277	AISHWARYA AHREESHAIL VAILI		

37	U15KM21S0279	RANJITA PAWAR	Zener diode as a voltage regulator	Smt. Vanishree Hiremath	
38	U15KM21S0281	SUNITA BAGEWADI			
39	U15KM21S0284	RASHMI			
40	U15KM21S0290	MALLIKARJUN KALLAPPA TAMBAD			
41	U15KM21S0291	POOJA MASALI	Inverse square law		
42	U15KM21S0297	SNEHA SANAMAGOND			
43	U15KM21S0299	APARNA RAVI KANNUR			
44	U15KM21S0301	RUTIK MARUTI CHAVAN			
45	U15KM21S0310	SHRUTI	Thermistor energy gap	Smt. Anjana R. Kenganal	
46	U15KM21S0312	LAXMESH RAMESH KHYADI			
47	U15KM21S0313	SANGAMESH TARANAL			
48	U15KM21S0315	PREMA S			
49	U15KM21S0337	SANDEEP LAXMAN RATHOD	Zener diode as a voltage regulator	Smt. Anjana R. Kenganal	
50	U15KM21S0339	BHAGYANIDHI BUDIHAL			
51	U15KM21S0354	ASHWINI SADASHIVA ANJUTAGI			
52	U15KM21S0357	SUVARNA IRANNA YALAWAR			
53	U15KM21S0359	POOJA MALLAPPA PATIL	Solar cell characteristics	Smt. Sudha Hatagar	
54	U15KM21S0360	RAKESH GUGRI			
55	U15KM21S0362	KAVYASHREE MAHANTESH			
56	U15KM21S0366	SAVITA BILIJADAR			
57	U15KM21S0367	SUSHMITA	Thermistor energy gap	Smt. Sudha Hatagar	
58	U15KM21S0369	CHAITRA SHARANABASAPPA			
59	U15KM21S0370	KASHIBAI ISHWARAPPA PUJARI			
60	U15KM21S0372	SPOORTI SHIVAPPA SIDDAPUR			
61	U15KM21S0383	SNEHA SASANUR	Solar cell characteristics	Miss. Pooja Patil	
62	U15KM21S0384	SHRUTI PUJARI			
63	U15KM21S0388	JYOTI SHARANAPPA ANJUTAGI			
64	U15KM21S0389	NAGAVENI HARAWAL			
65	U15KM21S0390	AISHWARYA PARAGON	Characteristics of GM Counter	Miss. Pooja Patil	
66	U15KM21S0392	RASHMI YECHCHI			
67	U15KM21S0395	MANJUNATH BASUGOUD			
68	U15KM21S0396	VIDYA SHREESHAIL BIRADAR			
69	U15KM21S0425	KARTIK VIJAYKUMAR SAYAGAVI	Zener diode as a voltage regulator	Miss. Pooja Patil	
70	U15KM21S0441	ANANYA MALLIKARJUN BIRADAR			
71	U15KM21S0451	LAXMI BHARAMACHI			
72	U15KM21S0459	ASHWINI RATHOD			
73	U15KM21S0464	ANUJA NAGRAJ SALOTAGI	Attenuation of gamma rays in alluminium foils using GM Counter	Miss. Pooja Patil	
74	U15KM21S0469	LOHIT ISHWAR WALIKAR			
75	U15KM21S0503	SAVITA BABU CHAVAN			
76	U15KM21S0511	VAISHNAVI JAGADEESH ANGADI			
77	U15KM21S0556	NIRMALA DODDANINGAPPAGOL	Solar cell characteristics	Miss. Pooja Patil	
78	U15KM21S0558	ANKUSH BISE			
79	U15KM21S0560	AKHIL PUJARI			
80	U15KM21S0567	AKASH VIJAYKUMAR PAWAR			
81	U15MP21S0009	PRATHAMESH KAPASE	Attenuation of gamma rays in alluminium foils using GM Counter	Miss. Pooja Patil	

Arvind
Head
Department of Physics
I.Arts & K.C.P.Science College
Vijayapur-586103.

Shrikant
IQAC, Co-ordinator
S.B.Arts & K.C.P.Science College,
Vijayapur.

Dharmendra
Principal,
S.B.Arts & K.C.P. Science College,
VIJAYAPUR.

RANI CHANNAMMA UNIVERSITY, BELAGAVI

&

**B.L.D.E. ASSOCIATION
SB ARTS AND KCP SCIENCE COLLEGE
VIJAYAPUR**

**DEPARTMENT
OF
PHYSICS**
A PROJECT ON
SOLAR CELL CHARACTERISTICS

UNDER THE GUIDANCE OF

PROF. SMT ANJANA KENGANAL

DEPT OF PHYSICS

S.B ARTS AND K.C.P SCIENCE COLLEGE

Submitted By

SL.NO	NAME OF STUDENT	UUCMS NO
1	POOJA PATIL	U15KM21S0359
2	RAKESH GUGRI	U15KM21S0360
3	KAVYASHREE	U15KM21S0362
4	SAVITA BILIJADAR	U15KM21S0366

B.L.D.E ASSOCIATION
S.B ARTS AND K.C.P SCIENCE COLLEGE
VIJAYAPUR

DEPARTMENT OF PHYSICS

CERTIFICATE

This is to certify that the project report entitled “Solar Cell Characteristics” has been carried out by Miss. Pooja Patil (U15KM21S0359), Mr. Rakesh Gugri (U15KM21S0360), Miss. Kavyashree (U15KM21S0362), Miss. Savita Bilijadar (U15KM21S366), Students of B.Sc 6th Semester , Department of Physics under my guidance. This project is submitted in partial fulfillment of requirement for the award of Bachelor’s Degree in Physics during the academic year 2023-2024.

ANJANA KENGANAL
GUIDE

Prof Anjana Kenganal
Dept of Physics
S.B Arts and K.C.P Science College
Vijayapur

ANIL B. NAIK
HOD

Dr Anil. B. Naik
Dept of physics
S.B Arts and K.C.P Science College
Vijayapur

B.L.D.E ASSOCIATION
S.B ARTS AND K.C.P SCIENCE COLLEGE
VIJAYAPUR

DECLARATION

We hereby declare that, this project entitled “solar cell characteristics” under the supervision of prof Anjana Kenganal is being submitted to the Dept of Physics, S.B Arts and K.C.P Science College Vijayapur, affiliated to the RANI CHANNAMMA UNIVERSITY, BELAGAVI for the partial fulfilment of academic curriculum and also for the award of Bachelor’s Degree in Physics.

Pooja Patil	U15KM21S0359	<u>Pooja Patil</u>
Rakesh Gugri	U15KM21S0360	<u>Rakesh</u>
Kavyashree	U15KM21S0362	<u>K.M. Kaladagi</u>
Savita Bilijadar	U15KM21S0366	<u>Savita</u>

Place: Vijayapur

Date: 13/08/2024

ACKNOWLEDGEMENTS

We would like to extend our heartfelt gratitude to **Prof. Smt Anjana Kenganal** for her invaluable guidance and support, which were instrumental in the successful completion of this project.

Our sincere thanks also go to **Dr. R. M. Mirdhe**, principal and **Dr. Anil. B. Naik**, HoD of Physics, for providing us with the opportunity to undertake this insightful project on “**Solar Cell Characteristics**” their encouragement and support were greatly appreciated.

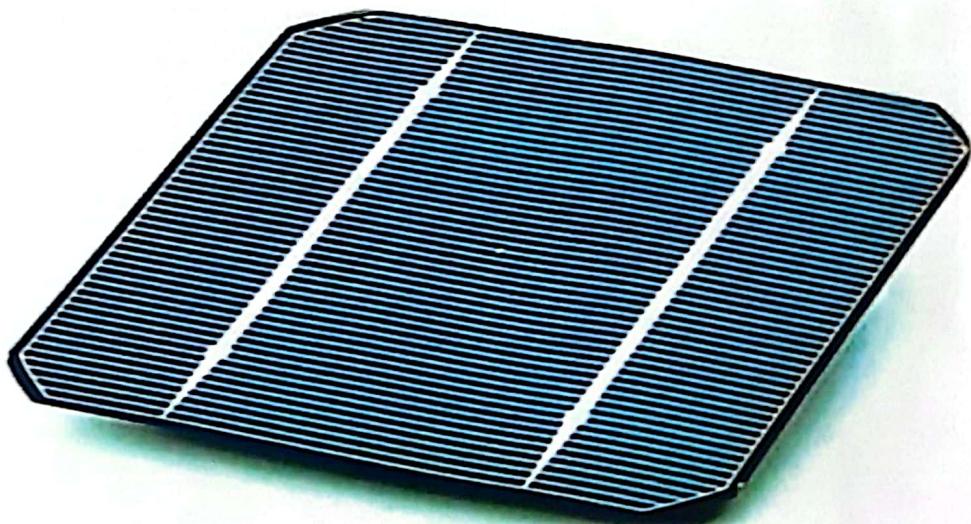
Additionally, we wish to express our thanks to lecturers, **lab attenders (Basavaraj Hiremath & M.I Shiek)** and classmates for their assistance and encouragement, which played a crucial role in helping us to complete this project within the stipulated time frame.

ABSTRACT

This project report details the solar cell characteristics. The report provides insights into the project's Introduction about solar cell, Aim of experiment, Apparatus required, Formulae used, nature of graph obtained, circuit diagram and experimental connections, procedure followed, observation, results and conclusions.

INDEX

1. Introduction
2. Aim
3. Apparatus
4. Formulae
5. Nature of graph
6. Circuit diagram & Experimental connections
7. Procedure
8. Observations and Tabular column
9. Graph obtained
10. Calculation
11. Results
12. References


• • •
o

INTRODUCTION

Solar Cell:

A solar cell is also called a photovoltaic cell .it is an electronic device that converts the energy of light directly into electricity by means of photovoltaic effect.

- It is a form of photo voltaic cell, a device whose electrical characteristics (such as current, voltage or resistance) vary when it is exposed to light.
- Individual solar cell devices are often the electrical building blocks of photovoltaic modules known collegially as “solar panels”.
- Almost commercial solar cells consist of crystalline silicon with a market share of 95%, cadmium telluride thin film solar cells account for the remainder.

Characteristics Of Solar Cell

The basic characteristics of solar cell are short circuit current (I_{sc0}), the open circuit voltage (V_{oc}), the fill factor (FF) and solar energy conversion efficiency. The influence of both the diode saturation current density and of I_{sc} on V_{oc} , FF and efficiency is analyzed for ideal solar cells.

Theory of solar cells explain the process by which light energy in photons is converted into electric current when photons strike a suitable semiconductor device. The theoretical studies are practical use because they predict the fundamental limits of a solar cell and give guidance on the phenomena that contribute to losses and solar cell efficiency.

Solar cell efficiency vary from 6% amorphous silicon –based solar cells to 44% with multiple junction production cells and 44.4% with multiple assembled into a hybrid package. Solar cell energy conversion efficiencies for commercially available multi crystalline Si solar cells all around 14-19%.

Working And Application:

Working:

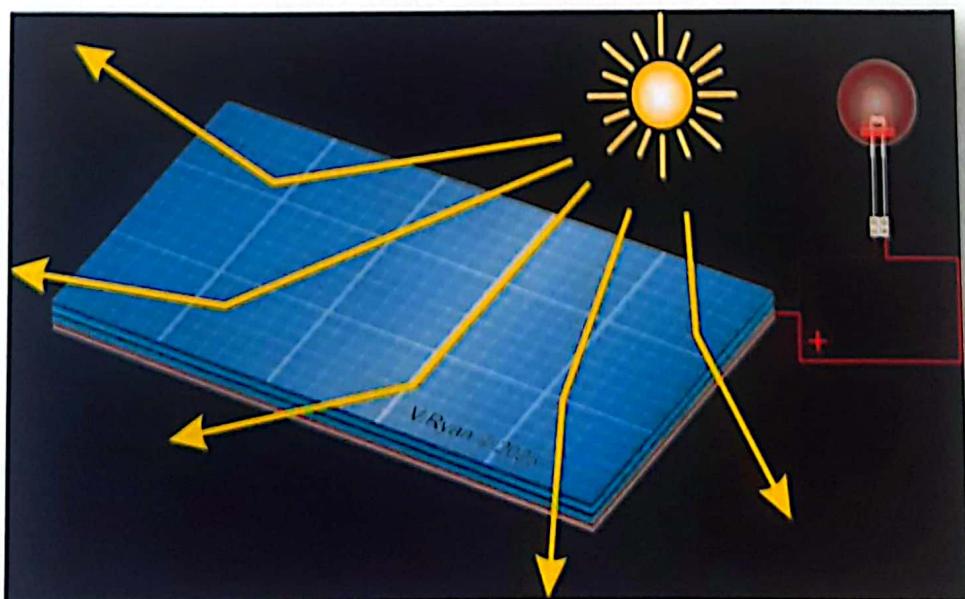
When sunlight strikes a solar cell, electrons in the silicon are rejected, which results in the formation of "holes" the vacancies left behind by the escaping electrons. If this happens in the electric field, the field will move electrons to the n-type layer and holes to the p-type layer.

Applications:

Assembles solar cells are used to make solar modules that generate electrical power for sunlight, as distinguished from a "solar thermal module" or "solar hot water panel". A solar energy generates solar power using solar cell.

Applications of solar cells as an alternative energy source for vehicular applications is growing industry electric vehicles are operate of solar energy and sunlight are commonly referred to as solar cars. these vehicles use solar panels convert absorbed light into electrical energy that is then stored in batteries.

AIM


Study the characteristics of solar cell by finding open circuit voltage and short circuit current. Calculate the fill factor for a given distance between cell and source of light with help of voltage developed versus current graph.

APPARATUS

1.40W, 230v bulbs, connecting wires.

2. Solar cell

3. Resistance box

4. Voltmeter (0-3 v)

5. Milliammeter (0-25 mA)

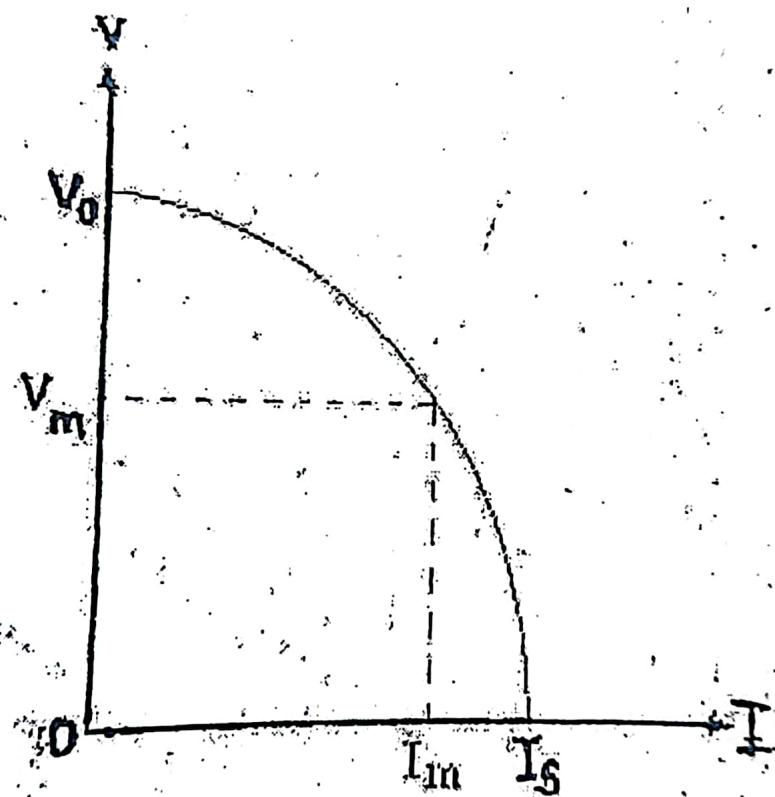
FORMULAE

1. Ideal power of the cell = $V_0 \times I_s$,

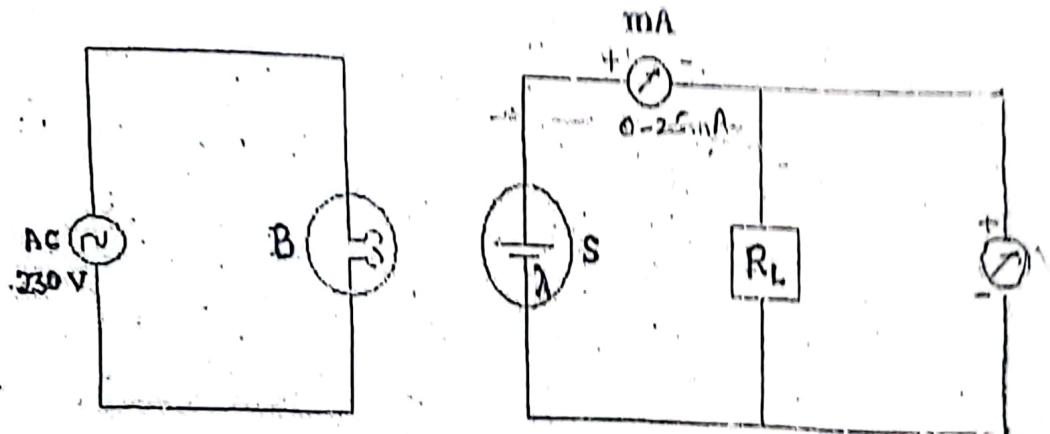
Where V_0 – Open circuit voltage

I_s – Short circuit current

2. Useful power of the cell = $V_m \times I_m$,


Where V_m – Voltage

I_m – Current


For the area of largest rectangle of V-I curve

$$3. \text{Fill Factor} = \frac{\text{Useful power}}{\text{Ideal power}} = \frac{V_m \times I_m}{V_0 \times I_s}$$

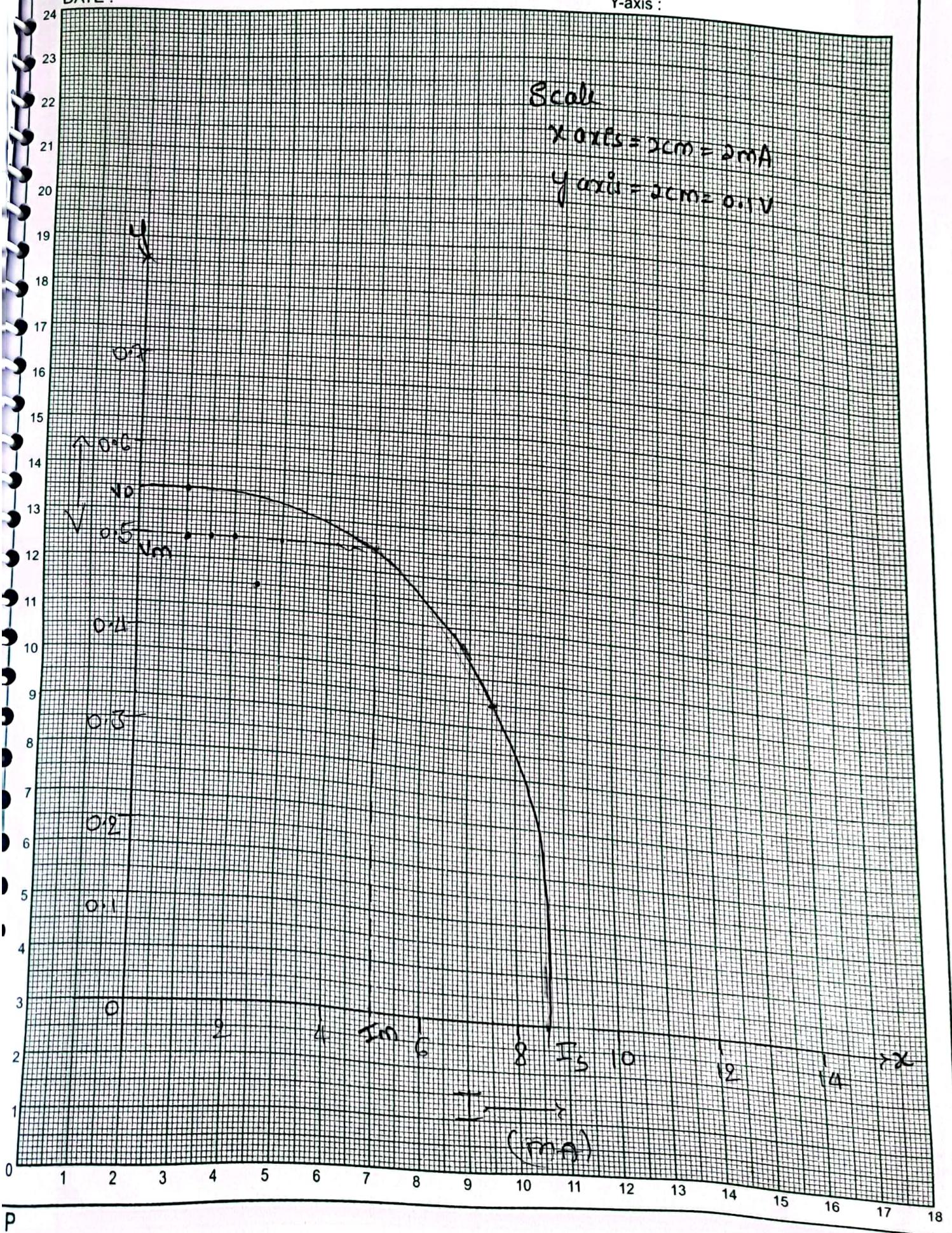
NATURE OF GRAPH

CIRCUIT DIAGRAM & EXPERIMENTAL CONNECTIONS

Where, B-Bulb, S-Solar cell, R_L-Load resistance, mA-Milliammeter & V-Voltmeter

PROCEDURE

1. Set up the circuit as shown in figure the solar cell power supply is connected to the bulb.
2. Place the solar cell at a particular distance from the variable light source
3. Vary intensity of the light source note down the voltage and current in the tabular column
4. Next note the short circuit current I_{sc} when the voltage across the solar cell is zero and open circuit voltage by removing the load resistance across the solar cell
5. Calculate power $P=VI$ for each reading
6. Plot the graph between the voltage versus current mark the maximum part.
7. Repeat the experiment by changing the distance between the solar cell and light source.


OBSERVATIONS & TABULAR COLUMN

1. Distance between lamp and cell, $d = 16 \times 10^{-2} \text{ m}$
2. Open circuit voltage, V_0 (when $RL = \infty$) = 0.55 V
3. Short circuit, I_s (When $RL = 0$) = 8.5 mA

Resistance R_L in ohms	Voltage V in volts	Current I in mA
50	0.35	7.5
100	0.5	5
150	0.45	2.5
200	0.5	3
250	0.5	1
300	0.5	2
400	0.5	1.5
500	0.5	1.5
600	0.55	1
700	0.55	1

EXPERIMENT NO. :

DATE :

SCALE X-axis :
Y-axis :

CALCULATION

1. Calculation Of Ideal Power:

From The Graph Of V-I: $V_0 = 0.55\text{v}$, $I_s = 8.5\text{mA}$

Ideal power of the cell = $V_0 \times I_s = 4.675\text{mW}$

2. Calculation Of Useful Power:

From The Graph Of V-I: $V_m = 0.5\text{ v}$, $I_m = 5\text{mA}$

Useful power of the cell = $V_m \times I_m$

= 2.5mW

3. Calculation Of Fill Factor:

$$\text{Fill factor} = \frac{\text{Useful power}}{\text{Ideal power}} = \frac{V_m \times I_m}{V_0 \times I_s}$$
$$= \frac{2.5}{4.675}$$
$$= \underline{0.53}$$

RESULT

Fill Factor of The Cell = 0.53

REFERENCES

1. [https://byjus.com/free-ias-prep/solar-cell/#:~:text=A%20solar%20cell%20is%20a,particles\)%20bombard%20the%20upper%20surface.](https://byjus.com/free-ias-prep/solar-cell/#:~:text=A%20solar%20cell%20is%20a,particles)%20bombard%20the%20upper%20surface.)
2. <https://testbook.com/ias-preparation/solar-cell>
3. https://www.youtube.com/watch?v=L_q6LRgKpTw