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CHAPTER 1
LINEAR TRASFORMATIONS

1.1 .INTRODUCTION

Linear Transformation is a function from one vector space to another vector space satisfying

certain conditions.

In particular linear transformation from R™ 1oR™ is known as the Euclidean linear

transformation .linear transformation have important applications in physics, Engineering and

various branches of mathematics.
Definition
Let v and w be two vector spaces

FunctionT: V — W is called a linear transformation from v to w if for all u,u and v and all

scalars K,
1.2.Properties of linear transformation
If T: U - V is linear transformation, then
01. T(0) = 0 where o and 0! are zero vectors of u and v respectively
T(a +0) = T(a) + T(0)
T(a) = T(a) + T(0)
T(a) + 0'=T(a) + T(0)
T(0)=0*
02 consider
Tla + (—a)] = T(a) + T(—a)
T(0) = T(a) + T(—a)

0'=T(a) + T(-a)

m

Mathematics agel
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-

T(—a) is the inverse of T(—a)
s T(—a) = —-T(a)

(03) We shall prove the result by mathematical induction

Let p(n):T(cy @y + €3 @z e vee cee s e ca T (apy

Now

P(1):T (c,a,)= c1T(a,) as T is linear

As Tis linear P(1) is true

Hence the result is true for n=1

Let us assume that p(k) is true for same +ve integer k.

Le, T(c; a; + (105 RSO Y %)
¢ T(ay) + T (ay) .. ... ... cx(ay)is true

Now we shall show that p (K+1) is true,

Consider,

T(Cl a1 + Cz az + DTN + Ckak + Ck+1, aK+1) = 0

T(C1 a; + G, & T eee +Ck (247 ) + T(CK+1 - ak+1) =

Cl T(al) + Cz T(Q‘z) e vesa Ck T(ak) + Ck+1 T(ak+1)
(Since P(K) is true and T is linear
~P(K + 1) is true

~P(K) = p(K + 1) thus by induction P(n) is true for all integral values of n

T can be completely
_Matie}hatics
Page 2
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1.2.1.Standard Definitiop Linear Transformations

Matrix transformation: LetT:R, - R bea li
tTn m Inear

) transformation then there always exist
an mXn matrix A such that ’

T(X) = AX

This transf ioni .
ransformation is called the matrix transformation or the Euclidean linear

transformation. Hear A is called the standard matrix for T. It is denoted by [T)

For example T: R; — R defined by

T, y,z2)=(x =y—22y =323x + 2y + 5z) is a matrix transformation.

Zero Transformation: Let V and W be vector spaces. The mapping T: VoW

be defined by T (u) = OV u € V. V s called the zero transformation.

Itis easy to verify that T is linear transformation.

Identity Transformation: Let v be any vector space. The mapping L: V - V
Defined by L (u) = uV u € V is called the Tdentity Transformation on V

It is for the reader to verify that L is linear

1.2.2.Linear Transformation from images of basic vectors

A Linear Transformation is completely defined by the images of any set of basis vectors. Let

T:V = W be a linear transformation and (v, V2 e wer ... V) can be any basis for v. Then the

image T (v) of any vector u € V can be calculated using following steps

Step 01

Express u as a linear combination of the basis vectors (V1) U2y v e e s Dy )SQY
m
Mathematics
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Linear Transformation and it's Matrix _

V=kyvy + kaUateeeoeees +kpvn

Step 02

Apply the linear transformation Ton v as

T (V) =T(kyvy + kavg + e ween ke vn)

T (v) =k T(vy) + kaT(02) + o e +k,Tvp,
1.2.3.Composition of Linear Transformation

LetTi:u—vandT:v 2w be a linear transformation. Then the condition of T, with Ty is

the linear transformation defined by,
(Tp 0 Ty) (u) = T2(Ty (1)), where u€ U

Suppose thatT;:R™ = R™ and T»: R™ — R¥are linear transformation. Then their exist

matrices A and B of order mxn and kxm respectively
Such that
T, (x)=A(x) and T, (x)=(Bx)
Thus A =[T,] and B(T3)
(T, OTy) (=T T; (x) =Tz (4x)=B(Ax) BA)x=([[T:][T:]]) ()
So we have
T,0T,=[T2][T1]
Similarly, for 3 such linear transformations

T, 0T, 0 Ty=[T3] [T1] [T5]

1.2.4.Theorem 01.Show that the mapping f: v3(R) = v, (R)defined
by f (a,b,c) = (c,a +b) is liner

;

‘Mathematics Page 4
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S = S ———————

Proof:—
Let « =(ay, by, €1) and f=(ay, by, ;) be any two elements of v3(R)
Now
flec +B)=f{(ay, by, 1) + (a3, by, ;)
=f(a; + a3, by + by, ¢, + ¢;)

={(c1 + c2), (a; + a;) + (by + b))}

={(c1,a; + by) + (cy,ap + b,)}

=f(a,, by, ¢;) +f(ay, by, c;)

=f(e) +f(B)

1.2.5.Theorem 02.Show that the mapping f: v3(R) — v, (R) defined
by f(a,b,c) = (a-b,a+ c)islinear

Proof:—
Hear f:v3(R) — v,(R) defined as above is said to be linear, if
L flec+B)=f () + F(B)
And f(a x) = af (x),Va € F,x, 8 € v3(R)
Let x= (a,, a,, az) and f = (by, by, b3) and a€ F
Now f (e« +8)=f{(ay,a,, az) + (by, bz, b3)}
=f(a,4+by,a, + by, az)
=f[(a, + by) — (az + bz), (ay + by) + (a3 + b))
=[(a; — a,), (a; + a3)]*+[(by — b2), (by + by))
f(ay, az a3) + f(by, by, b3) = () + f(B)
flex+8) = f(a)f(B)
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Linear Transformation and it's Matrix

R T S e . -, . B — R ]

2. Also f(a x) = fla(a,, ay, a3)]
=f(aay, aa,, aa;)
=(aa, — aay,aa, + aay)

=a(a; — ay,a, + a;)

=af(ay,a;,a;) = af (x)

T
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tion the dimens;j
‘ Sion of the range s ace R (T) is
called rank oflmeartransformalion o v

RANGE OF LINEAR TRRMATIANSFOON'

LetT:V - W pe a linear transformation th

R(T)={T(a); a€V} R (T)is the set of all
(T) W.

NULLITY OF LINEAR TRANSFORMATION:-

LetT:V - W be a linear transformation the dimension of null space N (T) is called

as nullity of linear transformation.

NULL SPACE or KERNEL OF LINEAR TRANSFORMATION:
® LetT:U - V be a linear transformation .The null space (or kernel) of the
subset of U consisting of all vectors u whose image under T is 0 and it is
denoted by kernel (T) or N (T).

Elementary operations do not change rank of the matrix.

nx n identity 1. Rank of the null matrix is not defined=0

2. Rank of matrix =n

_ -3 = p(AT) = p(AAT) =
3.If A is nX n non singular matrix then p(4) = p(A™)p(A) = p(A7) = p(AAT)

p(A—l) = [)(AO)
4. A’ Tranjugate — Transposet conjugate.

; =0orl
5.Rank Row matrix is p(A) = 00f

T A) = 0or 1
6. Rank Column matrix is p( Page 7

Mﬂthematics
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1.3.RANK NULLITY THEOREM:

. . g ional for
STATEMENT: Let T:V - W be a linear transformation and V be finite dimensional vector
space then, r(T) + n(T) = dim(V)

OR

Rank + nullity=dimension of domain

PROOF: Let V be a vector space of dimension m
[.e dim V=m and
Dim (N(T))=n=n(T)
Since nullity of transformation is subspace V.
“sn<m
Let By{ay, ay, ... ... ... . @y} be a basis of nullity of linear transformation N(T).

We will extend this basis to basis of the vector space V.

Be={anap 0, B, By Bs})
n+s=m
Now, T(ay), T(az), . .. .., T(ay) belongs to null space.
~T(a;) =0,T(a,) =0,..... e T(ay) =0
(ajseN(T))
LetS ={T(B,),T(B,),..... v T(Bs)}

We shall show that the set of § of s Vectors of R(T) is g basis of R(T)

I. S spans R(T)
Since,B, is a basis of V.

= The set {T(a)), T(ay), ... .. T(ay)} and

_
Page 10
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T(ﬁ1 )u (ﬁz)' -------- T(Bs) Spans of R (T)

But T(ay) = 0,T(a,) = o,
Hence the set § Spans R (T7)

2. Sis linearly independent

Consider,C, T(B,) + CoT(B,) + -+ CT(B,) =0

T(CIBI) + 6By + -+ Csﬂs) =0
CIBI + CZﬁZ + e CSB_,-:O

~ 3 Scalard,, d,, ......... ,dy, such that

CiPy + Coffy + -+ Css
=da, +dya; + -+ dya,
S Cfy+CoBy + -+ Cpfpy — dray — dpay — -+ — dpay,
Since B, is basis of V

* Vectors in B, are linearly independent.

S is linearly independent
S is a basis of R (T)
Dim R (T) =S, dimn(T)=n
n+s=m

“N(T)+r (T) =dim V
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Linear Transformation and it's Matrix
W

1.3.1.THEOREM .Let T: U - V be a linear transformation then range of T
LER(T) is subspace of T

Proof -
Since T (0)=0,5 ‘0’ is in R (T) and thus R (M=0
Letvy, v, € R(T), Then vy = T(u;) and T'(u)for some u; and u, in U
NOW for a, beF au, +au, = al(u;) + aT (u,)
= T(au; + bu,) € R(T)

Since au, + bu, € U. Therefore R (T) is subspace of V
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the domain of T. this means that applying the transfor
multiplying by this matrix

uch a matrix ¢ : .
S an be found for any linear transformation T from R™ to R™, for fixed value of

nand m, and is unique to the transformation, in this lesson, we will focus on how exactly to

find that matrix A, called the standard matrix for the transformation.

DEFINITION

LetT: Ry, = R,, be a linear transformation. Then we can find a matrix such that

T(B = AX .In this case, we say that T is determined or induced by the matrix A is known as

matrix of linear transformation.

1.4.1.PROPERTIES:HOW TO FIND THE MATRIX OF A LINEAR
TRANSFORMATION

In order to find this matrix, we must first define a special set of vector from the domain

called the standard basis. The big concept of a basis will be discussed when we look at

general vector spaces, for now We just need to understand what vectors make up this set.
’

The standard basis for R? is:

o=l ==l

The standard basis for R? is:

1 0

— — 1

E; . [0] €2 [0
1
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Linear Transformation and it's Matrix

See the Pattern? We can define the standard basis like this forany R™

The standard matrix of a transformation T:R™ = R™ has Column

LKCHN AT R T(ey), where ey, €5,

€,. represent the standard basis that is:

......................

T(x) = 4% & A = [T(e)) T(e})]

Therefore, to find the standard matrix, we will find the image of each standard basis

vectors. This is show in the following examples.

1.4.2.EXAMPLES

1: FIND THE STANDARD MATRIX FOR THE TRANSFORMATION T WHERE;:
x1 x1—x2
T||x2]|= -
x3 ) [ 2x3

T takes vectors with three entries to vectors with two entries therefore:

Solution;

T:R3 - R?

So the domain of T is R3.to find column of the standard matrix for the transformation we will
need to find:

T(e,).T(ey), and T(es)

Using the given rule for T:

VM_athematics

Page 14
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1.4.3. FIND THE STANDARD MATRIX FOR THE TRANSFORMATION T WHERE:

()t

T takes vectors with three entries to vectors with two entries therefore:

Solution:

T:R3 5 R?

. . ix for the transformation we will
So the domain of T is R3.to find column of the standard matr

need to find:

T(—eT)‘. T(Ez_)-,' and T(e3)

()

1-0
=12(0)

= o

Using the given rule for T:
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1.4.4. THEOREM 01:EVERY MATRIX TRANSFORMATION IS A LINEAR
TRANSFORMATION

Suppose that T is a matrix transformation such that T(x) = A(x) for some matrix (A)

and that the vectors & and ¥ are in the domain. Then for arbitrary scalars c and d:
T(cii + dP) = A(cii + dv)
= A(cid) + A(dv)
= cAii + dAD
= cT(u) + dT(¥)
T(ci + dv) = cT(W) + dT ()

T must be a linear transformation
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[CATIONS

i Cerebg

x of lincar transformation ¢

AT
Mair an be used to merge multiple

into a single transformation
r =

transformations

|0|-,-clhc

(jnear iransformation have numerous applications is various ficlds. including:
inc? g

Lincar Algebra: They are used to solve systems of lincar cquations, find cigenvalues
and cigenvectors, and diagonalize matrices.

Compulcr Graphics: Lincar transformations arc used to perform rotations. scaling, and

Machine Leaming: They arc used in neural networks, principal component analysis

tad

(PCA), and singular valuc decomposition (SVD).

4. Physics and Engincering: Lincar transformations describe the motion of the objects.

including rotations, reflections, and projcctions.

5 Data Analysis: they are used in data compression, Image

. . lve ditferential equations and
6. Differential Equations: Lincar transformations help solve differential equ

analyze stability.
meces and calculate steady-state
7.Markov Chains: They are used 10 model random processes ot

Probabilities.

n Linea progmmming and optimization

_ . - e are used L
8. Optimization: Linear transformations arc

‘“’hﬂiqucs, |
. and Fourier analysis.
“leor rolution, and
% Signal Processing: They are used i filtering, con¥
= fo o . ‘ . g ‘
i< testing, conlidence
- riltert ypothesis testing
"] S‘ l. 1 f 13“0"5‘ are llSCd mn IIllCrlﬂg, l )l
Slabistics: Linear transiorn §

iﬂlc y .
nals, ang regression analysis- 1o simplity complex

. formations ‘

These applications leverage the power of lin¢ putations.

= anl COM
Py nd facilitate €Mt

s, reveal underlying structures:
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Linear Transformation and it's Matrix

o CONCLUSION

A lincar transformation 1s a mathematical function that maps vector from one vector
space 10 another while preserving the opzrations of vector addition and scalar multiplication.

The key conclusions about linear transformation are:

| .Preservation of operations: Lincar transformations preserve the operations of vector

addition and scalar multiplications

2, Matrix representation: Every lincar transformation can be represented by a matrix.

o lincar transformations is also a lincar

3, Composition: The composition of tw

transformation.

4. Inverse: If a lincar transformation is ivertible, its inverse is also a lincar transformation.

5. Kernel and image: Every lincar transformation has a kernel (null space) and an image

(range)
fa lincar (ransformation plus the nullity equals the

6 Rank-nullity theorem: The rank 0

dimension of the domain.
A lnvertabilily: A lincar transformation is invertible if and only ilits matrix representation
S inverible,
sear algebra and arc crucial for understanding

ysis, machine leaming, and

nlc . . . "y
S¢ conclusion from the foundation of I )
ané

. ions, such as datd
al world appllcalmn.s. such as dak
al-

man
Y mathematical and re
physics.
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